three years old post.

Comrade, find something useful to post, or don't post at all... the Community Rules apply to everyone.

If you have one very large number and you had to find two prime factors of the number,

is partial multiplication a viable option.

;not a prime just example number

4267637625363

Steps

1- Use digit lengths to give a rough estimate of product length, if it doesn't fit the length of the number your trying to solve discard

2- Use partial multiplication to speedily go through the combinations of primes that don't fail step 1-

;again not primes just example numbers

1234567 X 3456789 = 4267637625363

But 567 X 789 = 447(363)

If 363 did NOT match the number you are trying to factor than you wouldn't have to continue the multiplication.

I don't know if the above method is used or not just curious.

is partial multiplication a viable option.

;not a prime just example number

4267637625363

Steps

1- Use digit lengths to give a rough estimate of product length, if it doesn't fit the length of the number your trying to solve discard

2- Use partial multiplication to speedily go through the combinations of primes that don't fail step 1-

;again not primes just example numbers

1234567 X 3456789 = 4267637625363

But 567 X 789 = 447(363)

If 363 did NOT match the number you are trying to factor than you wouldn't have to continue the multiplication.

I don't know if the above method is used or not just curious.

i dont see how the above can be used to find the 2 primes

You still need to guess some...

Are you saying you have found an algorithmn to be able to find most mantissa bits results like 5.3435635454 that can fit

a whole number? Or by converting binary to decimal dividing into two?

35/2 = 17 residue of 1 approximated if it's in a calculator. 17/2 = 8

residue of 1 8.75/2 = 4 residue of 1. Decimal from 35 | 10 and decimal

from 17 | 10. At last we have: 11100 It was done with a calculator it's

faster.

I don't remember how I created this number last year but I doubt it and this was once when I tried to invent algorithmns

but I don't think is right.

a whole number? Or by converting binary to decimal dividing into two?

35/2 = 17 residue of 1 approximated if it's in a calculator. 17/2 = 8

residue of 1 8.75/2 = 4 residue of 1. Decimal from 35 | 10 and decimal

from 17 | 10. At last we have: 11100 It was done with a calculator it's

faster.

I don't remember how I created this number last year but I doubt it and this was once when I tried to invent algorithmns

but I don't think is right.

1. divide first and then operate.

Ex:

4 4 1 1

_ * _ = _ * _ = 1

4 4 1 1

2. divide and then operate

3 4

_ * _ = 1.5-0.8=1.3 5/2 8/2= 2.5-4= 2.5-1.3= 1.2 <-- Fractional Long Number Trick -->

2 5

NOTE:

-0.8

1.5

---

1.3 Switch to upper part and operate.

It would had been easier operating 12/10 however, for long numbers it's easier this way.

NOTE: This is an experiment. Some numbers in coincidence using certain tricks can get you to the answer,

however it can be wrong operating different numbers. Since I haven't experience professional math,

if this trick valid? or it was already discover by someone else. I could call this kind of tricks

that can get you to the answer "Curse Tricks". I remember at school I had somehow got many results like

this but when operating different numbers it's different. If it's different it will be call "Curse Tricks."

1. divide first and then operate.

Ex:

4 4 1 1

_ * _ = _ * _ = 1

4 4 1 1

2. divide and then operate

3 4

_ * _ = 1.5-0.8=1.3 5/2 8/2= 2.5-4= 2.5-1.3= 1.2 <-- Fractional Long Number Trick -->

2 5

NOTE:

-0.8

1.5

---

1.3 Switch to upper part and operate.

It would had been easier operating 12/10 however, for long numbers it's easier this way.

NOTE: This is an experiment. Some numbers in coincidence using certain tricks can get you to the answer,

however it can be wrong operating different numbers. Since I haven't experience professional math,

if this trick valid? or it was already discover by someone else. I could call this kind of tricks

that can get you to the answer "Curse Tricks". I remember at school I had somehow got many results like

this but when operating different numbers it's different. If it's different it will be call "Curse Tricks."

This algorithmn doesn't follow algebra just was an invention and my friend tried with different numbers but it wasn't right.

Could be handling certain common factors, this was too from last year. If you have found, you had already post it before.

I think you're even doubting about your own answer and not completely know it.