
          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                         PART I                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.4
Date     :  16-02-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

 What is Assembler?
--------------------

Assembler has got to be one of my favourite languages to work with.  Not that
it's an easy language at first, but when you become familiar with it, you'll
realise just how logical it is.

Assembler is a low-level language which you can use to give you programs added
speed on slow tasks.  Basically it consists of statements which represent
machine language instructions, and as it's nearly machine code, it's fast.

In the early days before the 8086 came about, yes, there were humans on the
Earth back then, :), programming was not an easy task.  When the first
computers were developed, programming had to be done in machine code which was
_not_ an easy task, and so Assembler was born.

 Why use it?
-------------

As I said before, Assembler is fast.  It also allows you to speak to the
machine at hardware level, and gives you much greater control and flexibility
over the PC.  One of the other advantages of Assembler is that it allows you
to impress your friends by entering pages of seemingly incomprehensible code.
Watch them gather round you and be impressed/laugh at your nerdiness?   :)

 How did this tutorial come about?
-----------------------------------

Well, I had a couple of friends who wanted to learn Assembler to speed up
their Pascal programs, so I gave them some Assembler Tutorials I had.  While
these tutorials had all the information you'd ever need, they were not written
for the novice to easily understand, so I decided to write my own.

If you're using this tutorial and find it useful and informative, then please
mail me.  I appreciate feedback.



 LESSON 1 - Registers
----------------------

When you're working with Assembler, you'll have to use registers.  You can
think of these as variables already defined for you.  The most common are
listed below:

   ■ AX   - the accumulator.  Comprises AH and AL, the high and low bytes
            of AX.  Commonly used in mathematical and I/O operations.

   ■ BX   - the base.  Comprises BH and BL.  Commonly used as a base or
            pointer register.

   ■ CX   - the counter.  Comprises CH and CL.  Used often in loops.

   ■ DX   - the displacement, similar to the base register.  Comprises DH and
            DL.  I think you're getting the pattern now.

These registers are defined as general purpose registers as we can really
store anything we want in them.  They are also 16-bit registers, meaning that
we can store a positive integer from 0 to 65535, or a negative integer from
-32768 to 32768.

Incidently, the matter of the high and low byte of these resgisters has caused
quite a bit of confusion in the past, so I'll try to give it some explaination
here.  AX has a range of 0 to FFFFh.  This means that you have a range of
0 to FFh for AH and AL.  (If you're a little concerned with the hex, don't
worry.  Next tutorial will cover it.)

Now if we were to store 0A4Ch in AX, AH will contain 0Ah, and AL will contain
4Ch.  Get the idea?  This is a pretty important concept, and I'll cover it in
more depth next tute.

The segment registers:  - ta da!

These are some other registers which we will not cover for the first few
tutorials, but will look at in greater depth later.  They are immensely handy,
but can also be dangerous.

   ■ CS - the code segment.  The block of memory where the code is stored.
          DON'T fool around with this one unless you know what you are doing.
          I'm not all that sure that you can actually change it - I've never
          tried.

   ■ DS - the data segment.  The area in memory where the data is stored.
          During block operations when vast blocks of data are moved, this is
          the segment which the CPU commonly refers to.

   ■ ES - the extra segment.  Just another data segment, but this one is
          commonly used when accessing the video.

   ■ SS - no, not the German army.  This is the stack segment, in which the
          CPU stores return addresses from subroutines.  Take care with this
          one.  :)

Some others you will commonly use are:



   ■ SI - the source index.  Often used in conjuction with block move
          instructions.  This is a pointer within a segment, usually DS, that
          is read from by the CPU.

   ■ DI - the destination index.  Again, you'll use it a lot.  Another pointer
          within a segment, often ES, that is written to by the CPU.

   ■ BP - the base pointer, used in conjunction with the stack segment.  We
          won't be using it a lot.

   ■ SP - the stack pointer, commonly used with the stack segment.  DON'T fool
          around with this one until you are sure you know what you are doing.

By now you should understand what registers are.  There are other registers
too, and things known as flags, but we will not go into these as yet.

 ────────────────────────────────────────────────────────────────────────────

THINGS TO DO:

 1) Learn the various registers off by heart.
 2) Get a calculator that supports hexadecimal - damn handy, or a least an
    ASCII chart.  That covers 0 - 255, or 0h to FFh.

 ────────────────────────────────────────────────────────────────────────────

 LESSON 2 - The 8086 instruction set:
--------------------------------------

Okay, so you've learnt about registers, but how do you use them, and how do
you code in Assembler?  Well, first you'll need some instructions.  The
following instructions can be used on all CPU's from the 8086 up.

   ■ MOV <dest>, <value> - MOVE.  This instruction allows you to MOVE a value
                           into a location in memory.

                           EG: MOV AX, 13h

                           This would move 13h (19 decimal) into the AX
                           regsister.  So if AX had previously held 0, it
                           would now hold 13h.

                           THIS ONLY MOVES THE VALUE INTO THE REGISTER, IT
                           DOES NOT DO ANYTHING.

                           EG: (In Pascal) AX := $13;

   ■ INT <number>        - INTERRUPT.  This instruction generates an interupt.
                           You can think of this as a bit like a procedure.

                           EG: INT 10h

                           Would generate interrupt 10h (16 decimal).  Now
                           what this would do depends on the contents of the
                           AH register, among other things.  For instance,
                           if AX = 13h and interrupt 10h was generated, the
                           video would be placed into 320x200x256 mode.



                           More accurately:

                           AH would equal 00  - set mode subfunction, and
                           AL would equal 13h - 320x200x256 graphics mode.

                           However, if AH = 2h, and interrupt 16h was
                           generated, this would instruct the CPU to check if
                           a keypress was waiting in the keyboard buffer.

                           If AH = 2h, and BH = 0h and interrupt 10h was
                           generated, then the CPU would move the cursor to
                           the X location in DL and the Y location in DH.

                           You can bear in mind, that AH contains the function
                           to execute, and the other registers may contain any
                           other data necessary.

                           DO NOT WORRY ABOUT THIS FOR NOW, WE WILL COVER IT
                           IN GREATER DETAIL LATER.

   ■ ADD <dest> <value>  - ADD.  This instruction adds a number to the value
                           stored in dest.

                           EG: MOV AX, 0h  ; AX now equals 0h
                               ADD AX, 5h  ; AX now equals 5h
                               ADD AX, 10h ; AX now equals 15h

                           Pretty simple, huh?

   ■ SUB <dest> <value>  - SUBTRACT.  I think you can guess what this does.

                           EG: MOV AX, 13h  ; AX now equals 13h  (19 dec)
                               SUB AX, 5h   ; AX now equals 0Eh  (14 dec)

   ■ DEC <register>      - DECREMENTS something.

                           EG: MOV AX, 13h  ; AX now equals 13h
                               DEC AX       ; AX now equals 12h

   ■ INC <register>      - INCREMENTS something.

                           EG: MOV AX, 13h  ; Take a guess
                               INC AX       ; AX = AX + 1

   ■ JMP <location>      - JUMPS to a location.

                           EG: JMP 020Ah    ; Jump to the instruction at 020Ah
                               JMP @MyLabel ; Jump to @MyLabel.

                           DON'T WORRY IF THIS IS A LITTLE CONFUSING - IT GETS
                           WORSE!  THERE ARE 28 DIFFERENT JUMP INSTRUCTIONS TO
                           LEARN, MAYBE MORE.  WE'LL COVER THEM LATER.

   ■ CALL <procedure>    - CALLS a subfunction.

                           EG: Procedure MyProc;

                               Begin   { MyProc }
                                  { ... }
                               End;    { MyProc }



                               Begin   { Main }
                                  Asm
                                     CALL MyProc   ; Guess what this does!
                                  End;
                               End.

                           OR: CALL F6E0h  ; Call subfunction at F6E0h

   ■ LOOP <label>        - LOOPS for a period of time.

                           EG: MOV CX, 10h  ; This is why CX is called the
                                            ; COUNT register.  10h = 16

                               @MyLabel:

                               ; some stuff
                               ; more stuff

                               LOOP @MyLabel   ; Until CX = 0
                                               ; Note: CX gets decremented
                                               ; each time.  Don't DEC it
                                               ; yourself.

                           ; THIS WOULD LOOP 16 times - thats 10 in hex.

   ■ LODSB               - Load a byte
     LODSW               - Load a word
     STOSB               - Store a byte
     STOSW               - Store a word

     These instructions are used to put or get something in a location in
     memory.  The ES:SI register, (remember we talked about this earlier as
     SI being the source index?),  points to the location we want to get data
     from, and ES:DI points to where we will be putting information.

     Anyway, imagine that we have the following set-up in memory:

     Memory Location │ 06 │ 07 │ 08 │ 09 │ 10 │ 11 │ 12
     ────────────────┼────┼────┼────┼────┼────┼────┼───
     Value           │ 50 │ 32 │ 38 │ 03 │ 23 │ 01 │ 12

     When we use LODSB or STOSB, it returns or gets a number in AL.  So if
     ES:SI pointed to 07 and we executed a LODSB instruction, AL would now
     equal 32.

     Now, if we pointed ES:DI to 11, put say, 50 in the AL register and
     executed STOSB, then the following would result:

     Memory Location │ 06 │ 07 │ 08 │ 09 │ 10 │ 11 │ 12
     ────────────────┼────┼────┼────┼────┼────┼────┼───
     Value           │ 50 │ 32 │ 38 │ 03 │ 23 │ 50 │ 12

     NOTE:  When we use LODSB/STOSB we use AL.  This is because we will be
            dealing with an 8-bit number, (a byte) only.  We can store an
            8-bit number in AL, AH, or AX, but we cannot store a 16-bit
            number in AH or AL because these are 8-BIT REGISTERS.

            As a result, when we uses LODSW or STOSW, we must use AX and not



            AL, as we will be getting/putting a 16-bit number.

   ■ MOVSB - Move a byte
     MOVSW - Move a word

     As an example we'll get a byte from DS:SI and send it to ES:DI.

     At DS:SI:

     Memory Location │ 06 │ 07 │ 08 │ 09 │ 10 │ 11 │ 12
     ────────────────┼────┼────┼────┼────┼────┼────┼───
     Value           │ 50 │ 32 │ 38 │ 03 │ 23 │ 50 │ 12

     At ES:DI:

     Memory Location │ 06 │ 07 │ 08 │ 09 │ 10 │ 11 │ 12
     ────────────────┼────┼────┼────┼────┼────┼────┼───
     Value           │ 10 │ 11 │ 20 │ 02 │ 67 │ 00 │ 12

     If point DS:SI to location 07, point ES:SI to location 11 and
     execute MOVSB, the stuff at ES:DI will look like:

     At ES:DI:

     Memory Location │ 06 │ 07 │ 08 │ 09 │ 10 │ 11 │ 12
     ────────────────┼────┼────┼────┼────┼────┼────┼───
     Value           │ 10 │ 11 │ 20 │ 02 │ 67 │ 32 │ 12

     I HOPE YOU GET THE GENERAL IDEA.  HOWEVER, OF COURSE IT ISN'T THAT
     SIMPLE.  MEMORY LOCATIONS AREN'T ARRANGED IN ARRAY FORM, ALTHOUGH I WISH
     THEY WERE.  WHEN MOVING/GETTING/PUTTING YOU BE DEALING WITH A SEGMENT/
     OFFSET LOCATION.

   ■ REP - REPEAT for the number of times specified in the CX register.
           A REP in front of a MOVSB/LODSB/STOSB instruction would cause that
           instruction to be repeated.  So:

           If CX = 5, and
           if ES:DI pointed to 1000:1000h,

           then REP STOSB would store what was in the AL register in the
           location 1000:1000h 5 times.

THINGS TO DO:

1) Memorise all the instructions above - it's not hard and there's not many
   there.

2) Make sure you understand the theory behind it.

 ────────────────────────────────────────────────────────────────────────────

                             COMING UP NEXT WEEK:
                            ----------------------

           ■ Hexadecimal and what it is.



           ■ Segments and offsets - we touched on them in this tute.

           ■ Some more instructions.

           ■ Some sample programs, and code you can use in your programs.

             Maybe a PutPixel, ClrScr, anything I think is useful.

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

- Adam.
          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART II                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.4
Date     :  17-02-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Hello again, budding Assembler programmers.  For those who missed the first
issue, get it now at my homepage.

Anyway, last issue I said we'd be discussing hexadecimal, segments + offsets,
some more instructions and some procedures containing assembler that you could
actually use.

So, here we go with segments and offsets!

 ────────────────────────────────────────────────────────────────────────────

 LESSON 3 - Segments and Offsets
---------------------------------

Before we delve into the big, bad world of segments and offsets, there is some
terminology you'll need to know.



   ■ The BIT - the smallest piece of data we can use.  A bit - one eigth of
     a byte can be either a 1 or a 0.  Using these two digits we can make up
     numbers in BINARY or BASE 2 format.

     EG:     0000 = 0   0100 = 4   1000 = 8    1100 = 12   10000 = 16
             0001 = 1   0101 = 5   1001 = 9    1101 = 13   ...I think you
             0010 = 2   0110 = 6   1010 = 10   1110 = 14   get the idea...
             0011 = 3   0111 = 7   1011 = 11   1111 = 15

   ■ The NIBBLE, or four bits.  A nible can have a maximum value of 1111 which
     is 15 in decimal.  This is where hexadecimal comes in.  hex is based on
     those 16 numbers, (0-15), and when writing hex, we use the 'digits'
     below:

     0 1 2 3 4 5 6 7 8 9 A B C D E F

     Hexadecimal is actually quite easy to use, and just as a 'fun fact', I
     think the Babylonians - some ancient civilisation anyway - used a BASE-16
     number system.  Any historians out there who want to confirm this?

     IMPORTANT >>> A nibble can hold a value up to Fh <<< IMPORTANT

   ■ The BYTE - what we'll be using most.  The byte is 8 bits long - that's 2
     nibbles, and is the only value you'll be able to put in one of the 8-bit
     registers, EG: AH, AL, BH, BL, ...

     A byte has a maximum value of 255 in decimal, 11111111 in binary, or FFh
     in hexadecimal.

   ■ The WORD - another commonly used unit.  A word is a 16-bit number, and
     is capable of holding a number up to 65535.  That's 1111111111111111 in
     binary, and FFFFh in hex.

     Note:  Because a word is four nibbles, it is also represented by four
            hexadecimal figures.

     Note:  This is a 16-bit number, and this corresponds to the 16-bit
            registers.  That's AX, BX, CX, DX, DI, SI, BP, SP, DS, ES, SS
            and IP.

   ■ The DWORD, or double word consists of 2 words or 4 bytes or 8 nibbles or
     32-bits.  You will not use double words much in these tutorials, but
     we'll mention them later when we cover 32-BIT PROGRAMMING.

     A DWORD can hold from 0 to 4,294,967,295, that's FFFFFFFFh, or
     11111111111111111111111111111111.  I hope there's 32 one's back there.

     The DWORD is also the size of the 32-BIT extended registers, or EAX,
     EBX, ECX, EDX, EDI, ESI, EBP, ESP and EIP.

   ■ The KILOBYTE, is 1024 bytes, _NOT_ 1000 bytes.  The kilobyte is equal to
     256 double-words, 512 words, 1024 bytes, 2048 nibbles or 8192 BITS.  I'm
     not going to write out all the one's.

   ■ The MEGABYTE, or 1024 kilobytes.  That's 1,048,576 bytes or 8,388,608
     bits.

Now we've covered the terminology, let's have a closer look at just how those
registers are structured.  We said that AL and AH were 8-bit registers, so
shouldn't they look something like this?



                    AH                                 AL
           ┌───┬─┬─┬─┬─┬─┬─┬───┐              ┌───┬─┬─┬─┬─┬─┬─┬───┐
           │  0│0│0│0│0│0│0│0  │              │  0│0│0│0│0│0│0│0  │

In this case, both AH and AL = 0, OR 00h and 00h.  As a result, to work out
AX we use:  AX = 00h + 00h.  When I say + I mean, 'just put together' not
AX = AH PLUS AL.

So, if AH were to equal 00000011 and AL were to equal 0000100, to work out
AX we must do the following.

1) Get the hex values for AH and AL.

   00000011 = 03h   00010000 = 10h

2) Combine them.

   AX = AH  + AL
   AX = 03h + 10h
   AX = 0310h

And there you have it.  Not too tricky.

Okay, now lets look at a 16-bit register:

                                 AX
                     ┌───────────────────────┐
                     │                       │

                    AH                       AL
           ┌───┬─┬─┬─┬─┬─┬─┬───┐    ┌───┬─┬─┬─┬─┬─┬─┬───┐
           │  0│0│0│0│0│0│0│0  │    │  0│0│0│0│0│0│0│0  │

So from that, we can see that AX = 00000000 and 00000000, or 0000000000000000.

Now lastly, lets see what a 32-bit register looks like:

              ┌────────────────────────────────────────────────┐
              │                      EAX                       │
              ├───────────────────────┐                        │
              │           AX          │                        │
              ├───────────┬───────────┤                        │
              │ 00000000  │  00000000 │ 00000000     00000000  │
              │    AH     │     AL    │                        │
              └───────────┴───────────┴────────────────────────┘

Not too difficult either, I hope.  And if you got that, you're ready for
SEGMENTS and OFFSETS.

 A Segmented Architechture
----------------------------

Long, long ago, when IBM built the first PC, it wasn't feasible for programs
to be above 1 megabyte - heck, the first XT's had only 64K of RAM!  Anyway,
seeing as the designers of the XT didn't envisage huge applications, they



decided split memory up into SEGMENTS, measily small areas of RAM which you
can JUST fit a virtual screen for 320x200x256 graphics mode in.

Of course, you can access more than a megabyte of RAM, but you have to split
it up into segments to use it, and this is the problem.  Of course, with
32-bit programming you can access up to 4GB of RAM without using segments, but
that's another story.

Segments and offsets are just a method of specifying a location in memory.

EG:   3CE5:502A

      ^^^^ ^^^^
      SEG  OFS

Okay, here's the specs:

An OFFSET  = SEGMENT X 16
A  SEGMENT = OFFSET  / 16

Some segment registers are:

CS, DS, ES, SS and FS, GF  - Note: The last 2 are 386+ registers.

Some offset registers are:

BX, DI, SI, BP, SP, IP     - Note: When in protected mode, you can use any
                                   general purpose register as an offset
                                   register - EXCEPT IP.

Some common segments and offsets are:

    CS:IP - Addres of the currently executing code.
    SS:SP - Address of the current stack position.

    NOTE: DO NOT TAMPER WITH THESE!

So when we refer to segments and offsets, we do so in the form:

SEGMENT:OFFSET

A good example would be:

A000:0000 - which actually corresponds to the top left of the VGA screen in
            320x200x256 color mode.

            ** FUN FACT ** VGA RAM starts a A000h  :)

 ────────────────────────────────────────────────────────────────────────────

Phew!  That was a lot for the second tute.  However, we're not done yet.  The
AX, AH, AL thing is a concept you may not have grasped yet, so here we go:

    MOV   AX, 0     ; AX = 0
    MOV   AL, 0     ; AL = 0
    MOV   AH, 0     ; AH = 0



    MOV   AL, FFh   ; AL = FFh
                    ; AX = 00FFh
                    ; AH = 00h

    INC   AX        ; AX = AX + 1

                    ; AX = 0100h
                    ; AH = 01h
                    ; AL = 00h

    MOV   AH, ABh   ; AX = AB00h
                    ; AH = ABh
                    ; AL = 00h

Got it yet?

THINGS TO DO:

1) Learn the BIT/NIBBLE/BYTE... stuff off by heart.
2) Go back over the segment and offset examples.
3) Make sure you understand the relationship between AX, AH and AL.
4) How about some hex addition problems?

 ────────────────────────────────────────────────────────────────────────────

 The Stack
-----------

The stack is a very useful feature which we can take advantage of.  Think of
it as stack of papers in an IN tray.  If you put something on the top, it'll
be the first one taken off.

As you add something to the stack, the stack pointer is DECREASED, and when
you take it off, it is INCREASED.  To explain this better, look at the
diagram below:

    ┌──────────────────┐
    │    The STACK     │
    ├──────────────────┤
    │                  │      <<< When PUSHing a byte onto the stack, it goes
    │ ■                │          here - last on, first off.
    │ ■                │
    │ ■                │
    │ ■                │
    │ ■                │

    │  SP              │      <<< The stack pointer moves downward.
    └──────────────────┘

And in practice:

   MOV   AX, 03h   ; AX = 03h
   PUSH  AX        ; PUSH AX onto the stack



   MOV   AX, 04Eh  ; AX = 04Eh

                   ; Do anything...perform a sum?

   POP   AX        ; AX = 03h

Or:

   MOV   AX, 03h   ; AX = 03h
   PUSH  AX        ; Add AX to the stack

   MOV   AX, 04Eh  ; AX = 04Eh

                   ; Do anything...perform a sum?

   POP   BX        ; BX = 03h

You've just learnt two new instructions:

   ■ PUSH <register>   - PUSHes something onto the stack, and

   ■ POP <register>    - POPs it back off.

That's all you'll need to know about the stack - for now.

 ────────────────────────────────────────────────────────────────────────────

And lastly, some procedures which demonstrate some of this stuff.  Note that
the comments have been DELIBERATELY REMOVED.  It is your task to try and
comment them, and by comment I just mean write down what each instruction is
doing.  Note also, that some new instructions are introduced.

Procedure ClearScreen(A : Byte; Ch : Char);   Assembler;

Asm     { ClearScreen }
  mov   ax, 0B800h
  mov   es, ax
  xor   di, di
  mov   cx, 2000
  mov   ah, A
  mov   al, &Ch
  rep   stosw
End;    { ClearScreen }

Procedure CursorXY(X, Y : Word);   Assembler;

Asm    { CursorXY }
   mov   ax, Y
   mov   dh, al
   dec   dh
   mov   ax, X
   mov   dl, al
   dec   dl
   mov   ah, 2



   xor   bh, bh
   int   10h
End;    { CursorXY }

Procedure PutPixel(X, Y : Integer; C : Byte; Adr : Word);   Assembler;

Asm     { PutPixel }
   mov   ax, [Adr]
   mov   es, ax
   mov   bx, [X]
   mov   dx, [Y]
   xchg  dh, dl
   mov   al, [C]
   mov   di, dx
   shr   di, 2
   add   di, dx
   add   di, bx
   stosb
End;    { PutPixel }

Procedure Delay(ms : Word);   Assembler;

Asm     { Delay }
   mov   ax, 1000
   mul   ms
   mov   cx, dx
   mov   dx, ax
   mov   ah, 86h
   int   15h
End;    { Delay }

THINGS TO DO:

1) Go over the stack example.  Make your own code example.
2) Comment the procedures above as best as you can.  Try and guess what the
   new instructions do.  It's not that hard.

 ────────────────────────────────────────────────────────────────────────────

                             COMING UP NEXT WEEK:
                            ----------------------

           ■ Many more instructions, all the JUMPS.

           ■ What are flags?

           ■ The above procedures with comments.

           ■ An assembler-only program.  You'll need DEBUG at least,
             though TASM and TLINK would be a good idea.

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.



 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

- Adam Hyde.
          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART III                        ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.3
Date     :  27-02-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Welcome to the third tutorial in the series.  Last tutorial I said we'd be
discussing some more instructions, flags and an actual assembler program.

During this tutorial, you will find "Peter Norton's Guide to Assembler",
"Peter Norton's Guide to the VGA Card", or any of the "Peter Norton's Guide
to..." books damn handy.  You cannot program in Assembler without knowing
what all the interrupts are for and what all the subfunctions are.

I recommend you obtain a copy as soon as possible.

 ────────────────────────────────────────────────────────────────────────────

 An Assembler Program
----------------------

I don't generally write code in 100% Assembler.  It is much more convenient
to use a high level language such as C or Pascal, and use Assembler to speed
up the slow bits.  However, you may wish to torture yourself and write an
application completely in Assembler, so here is the basic template:

   ┌───────────────
   │ DOSSEG     - tells the CPU how to sort the segment.  CODE, DATA + STACK
   ├──
   │ MODEL      - declare the model we will use
   ├──
   │ STACK      - how much stack will we allocate?
   ├──
   │ DATA       - what's going into the data segment



   ├──
   │ CODE       - what's going into the code segment
   ├──
   │ START      - the start of your code
   ├──
   │ END START  - the end of your code
   └───────────────

FUN FACT:  I know of someone who wrote a Space Invaders clone, (9K), all
           in Assembler.  I have the source if anyone is interested...

Okay, now let's look at a sample program that'll do absolutely nothing!

    DOSSEG            ; Not really necessary
    .MODEL SMALL
    .STACK 200h
    .DATA
    .CODE

START:
    MOV   AX, 4C00h   ; AH = 4Ch, AL = 00h
    INT   21h
END START

Let's go over this in more detail.  Below, each of the above statements are
explained.

   ■ DOSSEG     - this sorts the segments in the order:

                  Code segments;
                  Data segments;
                  Stack segments.

                  Not really necessary, but leave it in while you are
                  learning.

   ■ MODEL      - this allows the CPU to determine how your program is
                  structured.  You may have the following MODELs:

                  1) TINY    - both code and data fit in the same 64K
                               segment.

                  2) SMALL   - code and data are in different segments, though
                               each are less than 64K.

                  3) MEDIUM  - code can be larger than 64K, but data has to be
                               less than 64K.

                  4) COMPACT - code is less than 64K, but data can be greater
                               than 64K.

                  5) LARGE   - code and data may be larger than 64K, though
                               arrays cannot be greater than 64K.

                  6) HUGE    - code, data and arrays may be larger than 64K.

   ■ STACK      - this instructs the PC to set up a stack as large as the
                  amount specified.

   ■ DATA       - allows you to create a data segment. 



                  Basically, where all your data will go.

   ■ CODE       - allows you to create a code segment.

                  Basically, where all your code will go.

   ■ START      - Just a label to tell the compiler where the main body of
                  your program begins.

      ■ MOV   AX, 4C00h   ; AH = 4Ch, AL = 00h

      This moves 4Ch into ah, which coincidently returns us to DOS.
      When interrupt 21h is called and AH = 4Ch, back to DOS we go.

      ■ INT   21h

   ■ END START  - Do you have no imagination?

Okay, I hope you got all that, because now we're actually going to do
something.  Excited yet?  :)

In this example we'll be using interrupt 21h, (the DOS interrupt), to print a
string.  To be precise, we'll be using subfunction 9h, and it looks like
this:

   ■ INTERRUPT 21h
   ■ SUBFUNCTION 9h

   Requires:

   ■ AH     = 9h
   ■ DS:DX  = FAR pointer to the string to be printed.  The string must be
              terminated with a $ sign.

So here's the example:

    DOSSEG
    .MODEL SMALL
    .STACK 200h
    .DATA

OurString   DB  "This is a string of characters.  "
            DB  "Do you lack imagination?  Put something interesting here!$"

    .CODE

START:
    MOV   AX, SEG OurString     ; Move the segment where OurString is located
    MOV   DS, AX                ; into AX, and now into DS

    MOV   DX, OFFSET OurString  ; Offset of OurString -> DX
    MOV   AH, 9h                ; Print string subfunction
    INT   21h                   ; Generate interrupt 21h

    MOV   AX, 4C00h             ; Exit to DOS sufunction
    INT   21h                   ; Generate interrupt 21h
END START



If you assemble this with TASM - TASM WHATEVERYOUWANTTOCALLIT.ASM  then link
with TLINK - TLINK WHATEVERYOUCALLEDIT.OBJ  you'll get an EXE file of about
652 bytes.  You can use these programs in DEBUG with some modifications, but
I'll leave that up to you.  To work with standalone Assembler you _need_
TASM and TLINK, though I guess MASM <shudder> would do the same job OK.

Now lets go over the code in a bit more detail:

    MOV   AX, SEG OurString     ; Move the segment where OurString is located
    MOV   DS, AX                ; into AX, and now into DS

    MOV   DX, OFFSET OurString  ; Move the offset where OurString is located
    MOV   AH, 9h                ; Print string subfunction
    INT   21h                   ; Generate interrupt 21h

You'll notice we had to use AX to put the segment address of OurString in DS.
You will discover that you cannot refer to a segment register directly in
Assembler.  In last tute's PutPixel procedure, I moved the address of the VGA
into AX, and then into ES.

The SEG instruction is also introduced.  SEG returns the segment of where the
string OurString is located, and OFFSET returns, guess what?, the offset from
the beginning of the segment to where the string ends.

Notice also that we used DB.  DB is nothing special, and stands for Declare
Byte, which is all it does.  DW, Declare Word and DD, Declare Double word also
exist.

You could have also put OurString in the code segment, the advantage being
CS will be pointing to the same segment as OurSting, so you wont have to
worry about finding the segment which OurString lies in.

The above program in the code segment would look like:

    DOSSEG
    .MODEL SMALL
    .STACK 200h
    .CODE

OurString     DB  "Down with the data segment!$"

START:
    MOV   AX, CS
    MOV   DS, AX

    MOV   DX, OFFSET Message
    MOV   AH, 9
    INT   21h

    MOV   AX, 4C00h
    INT   21h
END START

Simple, no?

We won't look at standalone Assembler programs again all that much, but most
of the techniques we'll be using can be implemented in the basic Assembler
standalone template.



 ────────────────────────────────────────────────────────────────────────────

 So, what are flags?
---------------------

This part's for my mate Clive who's been hassling me about flags for a while,
so here we go Clive, with FLAGS.

I can't remember if we introduced the CMP instruction or not, CMP - (COMPARE),
but CMP compares two numbers and reflects the comparison in the FLAGS.  To
use it you'd do something like this:

   ■ CMP   AX, BX

then follow with a statement like those below:

 UNSIGNED COMPARISONS:
------------------------

   ■ JA      - jump if AX was ABOVE BX;
   ■ JAE     - jump if AX was ABOVE or EQUAL to BX;
   ■ JB      - jump if AX was BELOW BX;
   ■ JBE     - jump if AX was BELOW or EQUAL to BX;
   ■ JNA     - jump if AX was NOT ABOVE BX;
   ■ JNAE    - jump if AX was NOT ABOVE or EQUAL to BX;
   ■ JNB     - jump if AX was NOT BELOW BX;
   ■ JNBE    - jump if AX was NOT BELOW or EQUAL to BX;
   ■ JZ      - jump if ZERO flag set - same as JE;
   ■ JE      - jump if AX is EQUAL to BX;
   ■ JNZ     - jump if ZERO flag NOT set - same as JNE;
   ■ JNE     - jump if AX is NOT EQUAL to BX;

 SIGNED COMPARISONS:
----------------------

   ■ JG      - jump if AX was GREATER than BX;
   ■ JGE     - jump if AX was GREATER or EQUAL to BX;
   ■ JL      - jump if AX was LOWER than BX;
   ■ JLE     - jump if AX was LOWER or EQUAL to BX;
   ■ JNG     - jump if AX was NOT GREATER than BX;
   ■ JNGE    - jump if AX was NOT GREATER or EQUAL to BX;
   ■ JNL     - jump if AX was NOT LOWER than BX;
   ■ JNLE    - jump if AX was NOT LOWER or EQUAL to BX;
   ■ JZ      - jump if ZERO flag set - same as JE;
   ■ JE      - jump if AX EQUALS BX;
   ■ JNZ     - jump if ZERO flag NOT set - same as JNE;
   ■ JNE     - jump if AX is NOT EQUAL to BX;

 NOT SO COMMON ONES:
---------------------

   ■ JC      - jump if CARRY flag set;
   ■ JNC     - jump if CARRY flag NOT set;
   ■ JO      - jump if OVERFLOW flag is set;
   ■ JNO     - jump if OVERFLOW flag NOT set;
   ■ JP      - jump if PARITY flag is set;



   ■ JNP     - jump if PARITY flag is NOT set;
   ■ JPE     - jump if PARITY is EVEN - same as JP;
   ■ JPO     - jump if PARITY is ODD - same as JNP;
   ■ JS      - jump if SIGNAL flag is NOT set;
   ■ JNS     - jump if SIGNAL flag NOT SET.

Phew!  My eyes have almost dried out after staring at this screen for so long!

Anyway, here's what they look like:

              ┌──────┬────┬────┬────┬────┬────┬────┬────┬────┐
              │ Flag │ SF │ ZF │ -- │ AF │ -- │ PF │ -- │ CF │
              ├──────┼────┼────┼────┼────┼────┼────┼────┼────┤
              │ Bit  │ 07 │ 06 │ 05 │ 04 │ 03 │ 02 │ 01 │ 00 │
              └──────┴────┴────┴────┴────┴────┴────┴────┴────┘

   Key:
  ------

  SF - Sign flag;
  ZF - Zero flag;
  AF - Auxillary flag;
  PF - Parity flag.
  CF - Carry flag.

Note: THERE ARE MANY MORE FLAGS TO LEARN.  They'll be covered in a later
      Tutorial.

 ────────────────────────────────────────────────────────────────────────────

THINGS TO DO:

 1) Go over the basic Assembler frame and memorise it all.
 2) Try writing a simple program that displays some _imaginative_ comments.
 3) Learn the least cryptic JUMP statements off by heart.

 ────────────────────────────────────────────────────────────────────────────

Okay, last tute I gave you some pretty nifty procedures, and asked you to
comment them.  I didn't wnat a detailed explanation of what they did - you're
not expected to know that yet - just a summary of what each instruction does.

EG:

   MOV   AX, 0003h   ; AX now equals 03h;
   ADD   AX, 0004h   ; AX now equals 07h;

So, here's the full set of procedures with comments:

{ This procedure clears the screen in text mode }

Procedure ClearScreen(A : Byte; Ch : Char);   Assembler;

Asm     { ClearScreen }
  mov   ax, 0B800h    { Move the video address into AX      }
  mov   es, ax        { Point ES to the video segment       }



  xor   di, di        { Zero out DI                         }
  mov   cx, 2000      { Move 2000 (80x25) into CX           }
  mov   ah, A         { Move the attribute into AH          }
  mov   al, &Ch       { Move the character to use into AL   }
  rep   stosw         { Do it                               }
End;    { ClearScreen }

Explanation:

We zero out DI so it equals 0 - the left hand corner of the screen.  This
is where we will start filling the screen from.

We move 2000 into CX because we will be putting 2000 characters onto the
screen.

{ This procedure moves the cursor to location X, Y }

Procedure CursorXY(X, Y : Word);   Assembler;

Asm    { CursorXY }
   mov   ax, Y              { Move Y value into AX           }
   mov   dh, al             { Y goes into DH                 }
   dec   dh                 { Adjust for zero based routine  }
   mov   ax, X              { Move X value into AX           }
   mov   dl, al             { X goes into DL                 }
   dec   dl                 { Adjust for zero based routine  }
   mov   ah, 2              { Call the relevant function     }
   xor   bh, bh             { Zero out BH - page 0           }
   int   10h                { Do it                          }
End;    { CursorXY }

Explanation:

The 'adjusting for the zero-based BIOS' is done because the BIOS refers to
position (1, 1) as (0, 0), and likewise (80, 25) as (79, 24).

Procedure PutPixel(X, Y : Integer; C : Byte; Adr : Word);   Assembler;

Asm     { PutPixel }
   mov   ax, [Adr]          { Move the address of the VGA into AX }
   mov   es, ax             { Dump AX in ES                       }
   mov   bx, [X]            { Move X value into BX                }
   mov   dx, [Y]            { Move Y value into DX                }
   xchg  dh, dl             { From here onwards calculates the    }
   mov   al, [C]            { offset of the pixel to be plotted   }
   mov   di, dx             { and puts this value in DI.  We will }
   shr   di, 2              { cover this later - next tute - when }
   add   di, dx             { we cover shifts vs muls.            }
   add   di, bx
   stosb                    { Store the byte at ES:DI             }
End;    { PutPixel }

NOTE:  I would be greatly interested in finding a PutPixel procedure faster
       than this one.  I have seen an inline one which does this in about half



       the time, but even so, this one is pretty hot.

{ This procedure is a CPU independant delay function }

Procedure Delay(ms : Word);   Assembler;

Asm     { Delay }
   mov   ax, 1000           { Move the # of ms in a sec into AX   }
   mul   ms                 { Make AX = # of ms to wait           }
   mov   cx, dx             { Get ready for delay - put # of ms   }
   mov   dx, ax             { where necessary                     }
   mov   ah, 86h            { Create the delay                    }
   int   15h
End;    { Delay }

 ────────────────────────────────────────────────────────────────────────────

Just about all the fluid has left my eyes now - it's nearly midnight - so I'd
better stop.  Sorry that the comments are a bit short, but I need my sleep!

Next tutorial will cover:

   ■ Shifts - what are they?
   ■ Some CMP/JMP examples.
   ■ How VGA memory is arranged, and how to access it.
   ■ um, some other great topic.

Next week I'll make an effort to show you how to access memory quickly, ie
the VGA, and give you some examples.

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.

          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART IV                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.5
Date     :  01-03-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat



Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Welcome back, budding Assembler coders.  The tutorials seem to be getting
popular now, and I've had some mail requesting me to cover the VGA so I'll
give it a go.  This is basically what I've been leading up to in my own
disjointed way anyhow, as graphics programming is not only rewarding, it's
also fun too!  Well, I think it's fun.  :)

Firstly though, we must finish off the CMP/JMP stuff, and cover shifts.  When
you're coding in Assembler, you'll find comparisons, shifts and testing bits
are very common operations.

 ────────────────────────────────────────────────────────────────────────────

 A Comparison Example
-----------------------

I won't bother going over the following example - it's fairly easy to
understand and you should get the basic idea anyway.

   DOSSEG
   .MODEL SMALL
   .STACK 200h
   .DATA

FirstString    DB  13, 10, "Is this a great tutorial or what? :) - $"
SecondString   DB  13, 10, "NO? NO? What do you mean, NO?$"
ThirdString    DB  13, 10, "Excellent, let's hear you say that again.$"
FourthString   DB  13, 10, "Just a Y or N will do.$"
ExitString     DB  13, 10, "Fine, be like that!$"

   .CODE

START:
   MOV   AX, @DATA                   ; New way of saying:
   MOV   DS, AX                      ; DS -> SEG data segment

KeepOnGoing:
   MOV   AH, 9
   MOV   DX, OFFSET FirstString      ; DX -> OFFSET FirstString
   INT   21h                         ; Output the first message

   MOV   AH, 0                       ; Get a key - store it in AX
   INT   16h                         ; AL - ASCII code, AH - scan code
                                     ; It doesn't echo onto the screen
                                     ; though, we have to do that ourselves

   PUSH  AX                          ; Here we display the char - note that
   MOV   DL, AL                      ; we save AX.  Obviously, using AH to
   MOV   AH, 2                       ; signal to print a string destroys AX
   INT   21h
   POP   AX



   CMP   AL, "Y"                     ; Check to see if 'Y' was pressed
   JNE   HatesTute                   ; If it was, keep going

   MOV   AH, 9                       ; Display the "Excellent..." message
   MOV   DX, OFFSET ThirdString
   INT   21h
   JMP   KeepOnGoing                 ; Go back to the start and begin again

HatesTute:
   CMP   AL, "N"                     ; Make sure it was 'N' they pressed
   JE    DontLikeYou                 ; Sadly, it was equal

   MOV   DX, OFFSET FourthString     ; Ask the user to try again
   MOV   AH, 9
   INT   21h
   JMP   KeepOnGoing                 ; Let 'em try

DontLikeYou:
   MOV   DX, OFFSET SecondString     ; Show the "NO? NO? What..." string
   MOV   AH, 9
   INT   21h

   MOV   DX, OFFSET ExitString       ; Show the "Fine, be like that!" string
   MOV   AH, 9
   INT   21h

   MOV   AX, 4C00h                   ; Return to DOS
   INT   21h
END START

You should understand this example, play around with it and write something
better.  Those with a "Peter Norton's Guide to..." book or similar,
experiment with the keyboard subfunctions, and see what other similar GetKey
combinations exist, or better still, play around with interrupt 10h and
go into some weird video mode - one which your PC supports! - and use some
color.

 ────────────────────────────────────────────────────────────────────────────

 Shifts
--------

A simple concept, and one which I should have discussed before, but like I
said - I have my own disjointed way of going about things.

First you'll need to understand some hexadecimal and binary arithmetic - a
subject I _should_ have covered before.  I usually use a scientific
calculator - hey, I always use a calculator, I'm not stupid! - but it is good
to be able to know how to multiply, add and convert between the various bases.

You also cannot use a calculator in Computing exams, not in Australia anyway.

 CONVERTING BINARY TO DECIMAL:

Way back in Tutorial One we looked at what binary numbers look like, so
imagine I have an eight-bit binary number such as:

 11001101



What is this in decimal???  There are a number of ways to convert such a
number, and I use the following, which I believe is probably the easiest:

 ╔═══════════════════════╤═════╤════╤════╤════╤════╤════╤════╤═════╗
 ║  Binary Number        │  1  │  1 │  0 │  0 │  1 │  1 │  0 │  1  ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║                       │   7 │  6 │  5 │  4 │  3 │  2 │  1 │  0  ║
 ║  Decimal equivalent   │  2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2   ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║  Decimal equivalent   │ 128 │ 64 │ 32 │ 16 │  8 │  4 │  2 │  1  ║
 ╟───────────────────────┼─────┴────┴────┴────┴────┴────┴────┴─────╨─────╖
 ║  Decimal value        │ 128 + 64 +  0 +  0 +  8 +  4 +  0 +  1  = 205 ║
 ╚═══════════════════════╧═══════════════════════════════════════════════╝

Get the idea?  Note for the last line, it would be more accurate to write:

   1 x 128 + 1 x 64 + 0 x 32 + 0 x 16 + 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 =     128 +     64 +      0 +      0 +     8 +     4 +     0 +     1
 = 205

Sorry if this is a little confusing, but it is difficult to explain without
demonstrating.  Here's another example:

 ╔═══════════════════════╤═════╤════╤════╤════╤════╤════╤════╤═════╗
 ║  Binary Number        │  0  │  1 │  1 │  1 │  1 │  1 │  0 │  0  ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║                       │   7 │  6 │  5 │  4 │  3 │  2 │  1 │  0  ║
 ║  Decimal equivalent   │  2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2   ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║  Decimal equivalent   │ 128 │ 64 │ 32 │ 16 │  8 │  4 │  2 │  1  ║
 ╟───────────────────────┼─────┴────┴────┴────┴────┴────┴────┴─────╨─────╖
 ║  Decimal value        │  0  + 64 + 32 + 16 +  8 +  4 +  0 +  0  = 124 ║
 ╚═══════════════════════╧═══════════════════════════════════════════════╝

Note:

   ■ You can use this technique on 16 or 32-bit words too, just work your way
     up.  Eg:  After 128, you'd write 256, then 512, 1024 and so on.

   ■ You can tell if the decimal equivalent will be odd or even by the first
     bit.  Eg:  In the above example, the first bit = 0, so the number is
     EVEN.  In the first example, the first bit is 1, so the number is ODD.

FUN FACT:  In case you didn't already know, bit stands for Binary digIT.  :)

 CONVERTING DECIMAL TO BINARY:

This is probably easier than base-2 to base-10.  To find out what 321 would be
in binary, you'd do the following:

    321                    =    256  X  1
    321 - 256 = 65         =    128  X  0
    65                     =     64  X  1
    65  -  64 = 1          =     32  X  0
    1                      =     16  X  0
    1                      =      8  X  0
    1                      =      4  X  0
    1                      =      2  X  0



    1                      =      1  X  1

And you get the binary number - 101000001.  Easy huh?   Let's just try another
one to make sure we know how:

    198                    =    128  X 1
    198 - 128 = 70         =     64  X 1
    70  -  64 =  6         =     32  X 0
    6                      =     16  X 0
    6                      =      8  X 0
    6                      =      4  X 1
    6   -   4 =  2         =      2  X 1
    2   -   2 =  0         =      1  X 0

And this gives us - 11000110.  Note how you can check the first digit to see
if you got your conversion right.  When I wrote the first example, I noticed
I had made a mistake when I checked the first bit.  On the first example, I
got 0 - not good for an odd number.  I realised my mistake and corrected the
example.

 CONVERTING HEXADECIMAL TO DECIMAL:

Before we begin, you should know that the hexadecimal number system uses the
'digits':

   0         =  0 (decimal)  =     0 (binary)
   1         =  1 (decimal)  =     1 (binary)
   2         =  2 (decimal)  =    10 (binary)
   3         =  3 (decimal)  =    11 (binary)
   4         =  4 (decimal)  =   100 (binary)
   5         =  5 (decimal)  =   101 (binary)
   6         =  6 (decimal)  =   110 (binary)
   7         =  7 (decimal)  =   111 (binary)
   8         =  8 (decimal)  =  1000 (binary)
   9         =  9 (decimal)  =  1001 (binary)
   A         = 10 (decimal)  =  1010 (binary)
   B         = 11 (decimal)  =  1011 (binary)
   C         = 12 (decimal)  =  1100 (binary)
   D         = 13 (decimal)  =  1101 (binary)
   E         = 14 (decimal)  =  1110 (binary)
   F         = 15 (decimal)  =  1111 (binary)

You'll commonly hear hexadecimal referred to as hex, or base-16 and it is
commonly denoted by an 'h' - eg 4C00h, or a '$', eg - $B800.

Working with hexadecimal is not as hard as it may look, and converting back
and forth is pretty easy.  As an example, we'll convert B800h to decimal:

FUN FACT: B800h is the starting address of the video in text mode for CGA and
          above display adaptors.  :)

          B    = 4096 x B = 4096 x 11 = 45056
          8    =  256 x 8 =  256 x  8 =  2048
          0    =   16 x 0 =   16 x  0 =     0
          0    =    1 x 0 =    1 x  0 =     0

          So B800h = 45056 + 2048 + 0 + 0
                   = 47104



          Note:  For hexadecimal numbers greater than FFFFh (65535 decimal),
                 you merely follow the same procedure as for binary, so for
                 the fifth hexadecimal digit, you'd multiply it by 65535.

                 Hit 16 X X on your calculator, and keep hitting =.  You'll
                 see the numbers you'd need to use.  The same applies for
                 binary.  Eg:  2 X X and = would give you 1, 2, 4, 8, 16...
                 etc.

Okay, that seemed pretty easy.  I don't even think we need a second example.
Let's have a crack at:

 CONVERTING DECIMAL TO HEXADECIMAL:

Again, the same sort of procedure as the one we followed for binary.  So
convert 32753 to hexadecimal, you'd do:

          32753 / 4096                  =  7 (decimal) = 7h

          32753 - (4096 x 7) = 4081

          4081 /  256                   = 15 (decimal) = Fh

          4081 - (256 x 15)  =  241

          241 / 16                      = 15 (decimal) = Fh

          241 - (16 x 15)    = 1

          1 / 1                         =  1 (decimal) = 1h

So eventually we get 7FF1h as our answer.  This is not a particularly nice
process and requires some explanation.

   1) When you divide 32753 by 4096 you get 7.9963379... We are not interested
      in the .9963379 rubbish, we just take the 7, as 7 is the highest whole
      number that we can use.

   2) The remainder left over from the above operation is 4081.  We must now
      perform the same operation on this, except with 256.  Dividing 4081
      by 256 gives us 15.941406...  Again, we just take the 15.

   3) Now we have a remainder of 241.  Dividing this by 16 gives us 15.0625.
      We take the 15, and calculate the remainder.

   4) Our last remainder just happens to be one.  Dividing this by one gives
      us, you guessed it - one.  YOU SHOULD NOT GET AN ANSWER TO SEVERAL
      DECIMAL PLACES HERE.  IF YOU HAVE - YOU HAVE DONE THE CALCULATION WRONG.

It's a particularly nasty process, but it works.  I do not use this except
when I have to - I'm not crazy - I use a scientific calculator, or Windows
Calculator <shudder> if I must.

 ────────────────────────────────────────────────────────────────────────────

Okay, now we've dealt with the gruesome calculations, you're ready for



shifts.  There are generally two forms of the shift instruction - SHL (shift
left) and SHR (shift right).  Basically, all these instructions do is shift
and expression to the left or right by a number of bits.  Their main
advantage is their ability to let you replace slow multiplications with much
faster shifts.  You will find this will speed up pixel/line/circle algorithms
by an amazing amount.

PC's are becoming faster and faster by the day - a little too fast for my
liking.  Back in the days of the XT - multiplication was _really_ slow -
perhaps taking up to four seconds for certain operations.  Not so much of this
applies today, but it is still a good idea to optimize your code.

When we plot a pixel onto the screen, we have to find the offset for the pixel
to plot.  Basically, what we do is to multiply the Y location by 320, add the
X location onto it, and add this to address A000h.

So basically, we get:   A000:Yx320+X

Now, as fast as your wonderful 486 or Pentium machine is, this could be made
a lot faster.  Lets rewrite that equation above so we use some different
numbers:

                            8          6
              Offset = Y x 2   +  Y x 2  + X
Or:
              Offset = Y x 256 +  y x 64 + X

Recognise those numbers?  They look an awful lot like the ones we saw in that
binary-to-decimal conversion table.  However, we are still using
multiplication.  How can we incorporate shifts into the picture?

What about:

              Offset = Y SHL 8 + Y SHL 6 + X

Now this is a _lot_ faster, as all the computer has to do is shift the number
left - much better.   Note that shifting to the left INCREASES the number,
and shifting to the right will DECREASE the number.

Here's an example that may help you if you are still unsure as to what is
going on.  Let's say that we're working in base-10 - decimal.  Now let's take
the number 36 as an example.  Shifting this number LEFT by 1, gives us:

  36  +  36                                             = 72

Now SHL 2:

  36  +  36  +  36  +  36                               = 144

And SHL 3:
  36 +  36   +  36  +  36  +  36  +  36  +  36  +  36   = 288

Notice the numbers forming?  There were 2 36's with SHL 1, 4 36's with SHL 2
and 8 36's with SHL 3.  Following this pattern, it would be fair to assume
that 36 SHL 4 will equal 36 x 16.

Note however, what is really happening.   If you were to work out the binary
value of 36, which looks like this: 100100, and then shifted 36 LEFT by two,
you'd get 144, or 10010000.  All the CPU actually does it stick a few extra
1's and 0's in a location in memory.



As another example, take the binary number 1000101.  If we were to shift it
LEFT 3, we'd end up with:

        1 0 0 0 1 0 1
          <---------- SHL 3
  1 0 0 0 1 0 1 0 0 0

Now lets shift the number 45 RIGHT 2.  In binary this is 101101.  Hence:

        1 0 1 1 0 1
        SHR 2 ---->
            1 0 1 1

Notice what has occurred?  It is much easier for the CPU to just move some
bits around, (approximately 2 clock ticks), rather than to multiply a number
out.  (Can get to around 133 clock ticks).

We will be using shifts a lot when programming the VGA, so make sure you
understand the concepts behind them.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │            PROGRAMMING THE VGA IN ASSEMBLER              │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

I have received quite a bit of mail asking me to cover the VGA.  So for all
those who asked, we'll be spending most of our time, but not all, on
programming the VGA.  After all, doesn't everyone want to code graphics?

When we talk about programming the VGA, we are generally talking about mode
13h, or one of its tweaked relatives.  In standard VGA this is the _only_ way
to use 256 colors, and it's probably one of the easiest modes to use too.
If you've ever tried experimenting with SVGA, you'll understand the nightmare
it is for the programmer in supporting all the different SVGA cards that
exist - except if you use VESA that is, which we'll discuss another time.  The
great thing about standard mode 13h is you know that just about every VGA card
in existence will support it.  People today often ignore mode 13h, thinking
the resolution to be too grainy by today's standards, but don't forget that
Duke Nukem, DOOM, DOOM II, Halloween Harry and most of the Apogee games use
this mode to achieve some great effects.

The great thing about mode 13h - that's 320x200x256 in case you were unaware,
is that accessing VGA RAM is incredibly easy.  As 320 x 200 only equals
64,000, it is quite possible to fit the entire screen into one 64K segment -
leaving out the hell of planes, (or should that be plains of Hell?), and
masking registers.

The bad news is that standard mode 13h really only gives you one page to use,
seriously hampering scrolling and page-flipping.  We'll later cover how to
get into your own modes - and mode X which will avoid these problems.

So, how do you get into the standard mode 13h?



The answer is simple.  We use interrupt 10h - video interrupt, and call
subfunction 00h - set mode.  In Pascal, you could declare a procedure like
this:

Procedure Init300x200;   Assembler;

Asm     { Init300x200 }
   mov   ah, 00h         { Set video mode }
   mov   al, 13h         { Use mode 13h   }
   int   10h             { Do it          }
End;    { Init300x200 }

You may also see:

   mov   ax, 13h
   int   10h

This is perfectly correct, and probably saves one clock tick by not putting
00h in AH and then 13h in AL, but it is more correct to use the first
example.

Okay, so we're in mode 13h, but what can we actually do in it, other than look
at a blank screen?  We could go back to text mode by using:

   mov   ah, 00h
   mov   al, 03h
   int   10h

but that's a little dull.  Why not plot a pixel?

 ────────────────────────────────────────────────────────────────────────────

There are a number of ways you could get a pixel on the screen.  The easiest
way in Assembler is to use interrupts.  You do it like this in Pascal:

Procedure PutPixel(X, Y : Integer; Color : Byte);   Assembler;

Asm     { PutPixel }
   mov   ah, 0Ch        { Draw pixel subfunction        }
   mov   al, [Color]    { Move the color to plot in AL  }
   mov   cx, [X]        { Move the X value into CX      }
   mov   dx, [Y]        { Move the Y value into DX      }
   mov   bx, 1h         { BX = 1, page 1                }
   int   10h            { Plot it                       }
End;    { PutPixel }

However, even though this is in Assembler, it isn't particularly speedy.  Why
you ask?  Because it uses interrupts.  Interrupts are fine for getting in and
out of video modes, turning the cursor on and off, etc... but not for
graphics.

You can think of interrupts like an answering machine.  "The CPU is busy right
now, but if you leave your subfunction after the tone - we'll get back to
you."



Not good.  Let's use that technique we discussed earlier during shifts.  What
we want to do is put the value of the color we want to plot into the VGA
directly.  To do this, we'll need to move the address of the VGA into ES,
and calculate the offset of the pixel we want to plot.  An example of this
is shown below:

Procedure PutPixel(X, Y : Integer; Color : Byte);   Assembler;

Asm     { PutPixel }
   mov   ax, 0A000h     { Move the segment of the VGA into AX,   }
   mov   es, ax         { and now into ES                        }
   mov   bx, [X]        { Move the X value into BX               }
   mov   dx, [Y]        { Move the Y value into DX               }
   mov   di, bx         { Move X into DI                         }
   mov   bx, dx         { Move Y into BX                         }
   shl   dx, 8          { In this part we use shifts to multiply }
   shl   bx, 6          { Y by 320                               }
   add   dx, bx         { Now here we add X onto the above,      }
   add   di, dx         { giving us DI = Y x 320 + X             }
   mov   al, [Color]    { Put the color to plot into AL          }
   stosb                { Put the byte, AL, at ES:DI             }
End;    { PutPixel }

This procedure is fast enough to begin with, though I gave out a much faster
one a few tutorials ago which uses a pretty ingenious technique to get DI.

 ────────────────────────────────────────────────────────────────────────────

Okay, I think that's enough for this week.  Have a play with the PutPixel
routines and see what you can do with them.  For those with a "Peter Norton's
Guide to..." book, see what other procedures you can make using interrupts.

 THINGS TO DO:

    1) We covered a lot in this tutorial, and some important concepts were
       in it.  Make sure you are comfortable with the comparisons, because
       we'll get into testing bits soon.

    2) Make sure you understand the binary -> decimal, decimal -> binary,
       decimal -> hex and hex -> decimal stuff.  Make yourself some example
       sums and test your answers with Windows Calculator.

    3) You _must_ understand shifts.  If you are still having problems,
       make some expressions up on paper, and test your answers with a program
       such as:

       Begin   { Main }
          WriteLn(45 SHL 6);
          ReadLn;
       End.    { Main }

       and/or Windows Calculator.

    4) Have a look at the VGA stuff, and make sure you have grasped the theory
       behind it, because next week we're really going to go into it in
       depth.

Next week I'll also try to give some C/C++ examples as well as the Pascal ones



for all you C programmers out there.

 ────────────────────────────────────────────────────────────────────────────

Next tutorial will cover:

   ■ How the VGA is arranged
   ■ How we can draw lines and circles
   ■ Getting and setting the palette in Assembler
   ■ Fades
   ■ Some C/C++ examples

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.

" I _never_ write code with bugs, I just add some unintentional features! "

          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART IV                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.5
Date     :  01-03-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Welcome back, budding Assembler coders.  The tutorials seem to be getting
popular now, and I've had some mail requesting me to cover the VGA so I'll
give it a go.  This is basically what I've been leading up to in my own
disjointed way anyhow, as graphics programming is not only rewarding, it's
also fun too!  Well, I think it's fun.  :)

Firstly though, we must finish off the CMP/JMP stuff, and cover shifts.  When
you're coding in Assembler, you'll find comparisons, shifts and testing bits
are very common operations.



 ────────────────────────────────────────────────────────────────────────────

 A Comparison Example
-----------------------

I won't bother going over the following example - it's fairly easy to
understand and you should get the basic idea anyway.

   DOSSEG
   .MODEL SMALL
   .STACK 200h
   .DATA

FirstString    DB  13, 10, "Is this a great tutorial or what? :) - $"
SecondString   DB  13, 10, "NO? NO? What do you mean, NO?$"
ThirdString    DB  13, 10, "Excellent, let's hear you say that again.$"
FourthString   DB  13, 10, "Just a Y or N will do.$"
ExitString     DB  13, 10, "Fine, be like that!$"

   .CODE

START:
   MOV   AX, @DATA                   ; New way of saying:
   MOV   DS, AX                      ; DS -> SEG data segment

KeepOnGoing:
   MOV   AH, 9
   MOV   DX, OFFSET FirstString      ; DX -> OFFSET FirstString
   INT   21h                         ; Output the first message

   MOV   AH, 0                       ; Get a key - store it in AX
   INT   16h                         ; AL - ASCII code, AH - scan code
                                     ; It doesn't echo onto the screen
                                     ; though, we have to do that ourselves

   PUSH  AX                          ; Here we display the char - note that
   MOV   DL, AL                      ; we save AX.  Obviously, using AH to
   MOV   AH, 2                       ; signal to print a string destroys AX
   INT   21h
   POP   AX

   CMP   AL, "Y"                     ; Check to see if 'Y' was pressed
   JNE   HatesTute                   ; If it was, keep going

   MOV   AH, 9                       ; Display the "Excellent..." message
   MOV   DX, OFFSET ThirdString
   INT   21h
   JMP   KeepOnGoing                 ; Go back to the start and begin again

HatesTute:
   CMP   AL, "N"                     ; Make sure it was 'N' they pressed
   JE    DontLikeYou                 ; Sadly, it was equal

   MOV   DX, OFFSET FourthString     ; Ask the user to try again
   MOV   AH, 9
   INT   21h
   JMP   KeepOnGoing                 ; Let 'em try



DontLikeYou:
   MOV   DX, OFFSET SecondString     ; Show the "NO? NO? What..." string
   MOV   AH, 9
   INT   21h

   MOV   DX, OFFSET ExitString       ; Show the "Fine, be like that!" string
   MOV   AH, 9
   INT   21h

   MOV   AX, 4C00h                   ; Return to DOS
   INT   21h
END START

You should understand this example, play around with it and write something
better.  Those with a "Peter Norton's Guide to..." book or similar,
experiment with the keyboard subfunctions, and see what other similar GetKey
combinations exist, or better still, play around with interrupt 10h and
go into some weird video mode - one which your PC supports! - and use some
color.

 ────────────────────────────────────────────────────────────────────────────

 Shifts
--------

A simple concept, and one which I should have discussed before, but like I
said - I have my own disjointed way of going about things.

First you'll need to understand some hexadecimal and binary arithmetic - a
subject I _should_ have covered before.  I usually use a scientific
calculator - hey, I always use a calculator, I'm not stupid! - but it is good
to be able to know how to multiply, add and convert between the various bases.

You also cannot use a calculator in Computing exams, not in Australia anyway.

 CONVERTING BINARY TO DECIMAL:

Way back in Tutorial One we looked at what binary numbers look like, so
imagine I have an eight-bit binary number such as:

 11001101

What is this in decimal???  There are a number of ways to convert such a
number, and I use the following, which I believe is probably the easiest:

 ╔═══════════════════════╤═════╤════╤════╤════╤════╤════╤════╤═════╗
 ║  Binary Number        │  1  │  1 │  0 │  0 │  1 │  1 │  0 │  1  ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║                       │   7 │  6 │  5 │  4 │  3 │  2 │  1 │  0  ║
 ║  Decimal equivalent   │  2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2   ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║  Decimal equivalent   │ 128 │ 64 │ 32 │ 16 │  8 │  4 │  2 │  1  ║
 ╟───────────────────────┼─────┴────┴────┴────┴────┴────┴────┴─────╨─────╖
 ║  Decimal value        │ 128 + 64 +  0 +  0 +  8 +  4 +  0 +  1  = 205 ║
 ╚═══════════════════════╧═══════════════════════════════════════════════╝

Get the idea?  Note for the last line, it would be more accurate to write:



   1 x 128 + 1 x 64 + 0 x 32 + 0 x 16 + 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 =     128 +     64 +      0 +      0 +     8 +     4 +     0 +     1
 = 205

Sorry if this is a little confusing, but it is difficult to explain without
demonstrating.  Here's another example:

 ╔═══════════════════════╤═════╤════╤════╤════╤════╤════╤════╤═════╗
 ║  Binary Number        │  0  │  1 │  1 │  1 │  1 │  1 │  0 │  0  ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║                       │   7 │  6 │  5 │  4 │  3 │  2 │  1 │  0  ║
 ║  Decimal equivalent   │  2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2  │ 2   ║
 ╟───────────────────────┼─────┼────┼────┼────┼────┼────┼────┼─────╢
 ║  Decimal equivalent   │ 128 │ 64 │ 32 │ 16 │  8 │  4 │  2 │  1  ║
 ╟───────────────────────┼─────┴────┴────┴────┴────┴────┴────┴─────╨─────╖
 ║  Decimal value        │  0  + 64 + 32 + 16 +  8 +  4 +  0 +  0  = 124 ║
 ╚═══════════════════════╧═══════════════════════════════════════════════╝

Note:

   ■ You can use this technique on 16 or 32-bit words too, just work your way
     up.  Eg:  After 128, you'd write 256, then 512, 1024 and so on.

   ■ You can tell if the decimal equivalent will be odd or even by the first
     bit.  Eg:  In the above example, the first bit = 0, so the number is
     EVEN.  In the first example, the first bit is 1, so the number is ODD.

FUN FACT:  In case you didn't already know, bit stands for Binary digIT.  :)

 CONVERTING DECIMAL TO BINARY:

This is probably easier than base-2 to base-10.  To find out what 321 would be
in binary, you'd do the following:

    321                    =    256  X  1
    321 - 256 = 65         =    128  X  0
    65                     =     64  X  1
    65  -  64 = 1          =     32  X  0
    1                      =     16  X  0
    1                      =      8  X  0
    1                      =      4  X  0
    1                      =      2  X  0
    1                      =      1  X  1

And you get the binary number - 101000001.  Easy huh?   Let's just try another
one to make sure we know how:

    198                    =    128  X 1
    198 - 128 = 70         =     64  X 1
    70  -  64 =  6         =     32  X 0
    6                      =     16  X 0
    6                      =      8  X 0
    6                      =      4  X 1
    6   -   4 =  2         =      2  X 1
    2   -   2 =  0         =      1  X 0

And this gives us - 11000110.  Note how you can check the first digit to see
if you got your conversion right.  When I wrote the first example, I noticed
I had made a mistake when I checked the first bit.  On the first example, I



got 0 - not good for an odd number.  I realised my mistake and corrected the
example.

 CONVERTING HEXADECIMAL TO DECIMAL:

Before we begin, you should know that the hexadecimal number system uses the
'digits':

   0         =  0 (decimal)  =     0 (binary)
   1         =  1 (decimal)  =     1 (binary)
   2         =  2 (decimal)  =    10 (binary)
   3         =  3 (decimal)  =    11 (binary)
   4         =  4 (decimal)  =   100 (binary)
   5         =  5 (decimal)  =   101 (binary)
   6         =  6 (decimal)  =   110 (binary)
   7         =  7 (decimal)  =   111 (binary)
   8         =  8 (decimal)  =  1000 (binary)
   9         =  9 (decimal)  =  1001 (binary)
   A         = 10 (decimal)  =  1010 (binary)
   B         = 11 (decimal)  =  1011 (binary)
   C         = 12 (decimal)  =  1100 (binary)
   D         = 13 (decimal)  =  1101 (binary)
   E         = 14 (decimal)  =  1110 (binary)
   F         = 15 (decimal)  =  1111 (binary)

You'll commonly hear hexadecimal referred to as hex, or base-16 and it is
commonly denoted by an 'h' - eg 4C00h, or a '$', eg - $B800.

Working with hexadecimal is not as hard as it may look, and converting back
and forth is pretty easy.  As an example, we'll convert B800h to decimal:

FUN FACT: B800h is the starting address of the video in text mode for CGA and
          above display adaptors.  :)

          B    = 4096 x B = 4096 x 11 = 45056
          8    =  256 x 8 =  256 x  8 =  2048
          0    =   16 x 0 =   16 x  0 =     0
          0    =    1 x 0 =    1 x  0 =     0

          So B800h = 45056 + 2048 + 0 + 0
                   = 47104

          Note:  For hexadecimal numbers greater than FFFFh (65535 decimal),
                 you merely follow the same procedure as for binary, so for
                 the fifth hexadecimal digit, you'd multiply it by 65535.

                 Hit 16 X X on your calculator, and keep hitting =.  You'll
                 see the numbers you'd need to use.  The same applies for
                 binary.  Eg:  2 X X and = would give you 1, 2, 4, 8, 16...
                 etc.

Okay, that seemed pretty easy.  I don't even think we need a second example.
Let's have a crack at:

 CONVERTING DECIMAL TO HEXADECIMAL:

Again, the same sort of procedure as the one we followed for binary.  So
convert 32753 to hexadecimal, you'd do:



          32753 / 4096                  =  7 (decimal) = 7h

          32753 - (4096 x 7) = 4081

          4081 /  256                   = 15 (decimal) = Fh

          4081 - (256 x 15)  =  241

          241 / 16                      = 15 (decimal) = Fh

          241 - (16 x 15)    = 1

          1 / 1                         =  1 (decimal) = 1h

So eventually we get 7FF1h as our answer.  This is not a particularly nice
process and requires some explanation.

   1) When you divide 32753 by 4096 you get 7.9963379... We are not interested
      in the .9963379 rubbish, we just take the 7, as 7 is the highest whole
      number that we can use.

   2) The remainder left over from the above operation is 4081.  We must now
      perform the same operation on this, except with 256.  Dividing 4081
      by 256 gives us 15.941406...  Again, we just take the 15.

   3) Now we have a remainder of 241.  Dividing this by 16 gives us 15.0625.
      We take the 15, and calculate the remainder.

   4) Our last remainder just happens to be one.  Dividing this by one gives
      us, you guessed it - one.  YOU SHOULD NOT GET AN ANSWER TO SEVERAL
      DECIMAL PLACES HERE.  IF YOU HAVE - YOU HAVE DONE THE CALCULATION WRONG.

It's a particularly nasty process, but it works.  I do not use this except
when I have to - I'm not crazy - I use a scientific calculator, or Windows
Calculator <shudder> if I must.

 ────────────────────────────────────────────────────────────────────────────

Okay, now we've dealt with the gruesome calculations, you're ready for
shifts.  There are generally two forms of the shift instruction - SHL (shift
left) and SHR (shift right).  Basically, all these instructions do is shift
and expression to the left or right by a number of bits.  Their main
advantage is their ability to let you replace slow multiplications with much
faster shifts.  You will find this will speed up pixel/line/circle algorithms
by an amazing amount.

PC's are becoming faster and faster by the day - a little too fast for my
liking.  Back in the days of the XT - multiplication was _really_ slow -
perhaps taking up to four seconds for certain operations.  Not so much of this
applies today, but it is still a good idea to optimize your code.

When we plot a pixel onto the screen, we have to find the offset for the pixel
to plot.  Basically, what we do is to multiply the Y location by 320, add the
X location onto it, and add this to address A000h.

So basically, we get:   A000:Yx320+X



Now, as fast as your wonderful 486 or Pentium machine is, this could be made
a lot faster.  Lets rewrite that equation above so we use some different
numbers:

                            8          6
              Offset = Y x 2   +  Y x 2  + X
Or:
              Offset = Y x 256 +  y x 64 + X

Recognise those numbers?  They look an awful lot like the ones we saw in that
binary-to-decimal conversion table.  However, we are still using
multiplication.  How can we incorporate shifts into the picture?

What about:

              Offset = Y SHL 8 + Y SHL 6 + X

Now this is a _lot_ faster, as all the computer has to do is shift the number
left - much better.   Note that shifting to the left INCREASES the number,
and shifting to the right will DECREASE the number.

Here's an example that may help you if you are still unsure as to what is
going on.  Let's say that we're working in base-10 - decimal.  Now let's take
the number 36 as an example.  Shifting this number LEFT by 1, gives us:

  36  +  36                                             = 72

Now SHL 2:

  36  +  36  +  36  +  36                               = 144

And SHL 3:
  36 +  36   +  36  +  36  +  36  +  36  +  36  +  36   = 288

Notice the numbers forming?  There were 2 36's with SHL 1, 4 36's with SHL 2
and 8 36's with SHL 3.  Following this pattern, it would be fair to assume
that 36 SHL 4 will equal 36 x 16.

Note however, what is really happening.   If you were to work out the binary
value of 36, which looks like this: 100100, and then shifted 36 LEFT by two,
you'd get 144, or 10010000.  All the CPU actually does it stick a few extra
1's and 0's in a location in memory.

As another example, take the binary number 1000101.  If we were to shift it
LEFT 3, we'd end up with:

        1 0 0 0 1 0 1
          <---------- SHL 3
  1 0 0 0 1 0 1 0 0 0

Now lets shift the number 45 RIGHT 2.  In binary this is 101101.  Hence:

        1 0 1 1 0 1
        SHR 2 ---->
            1 0 1 1

Notice what has occurred?  It is much easier for the CPU to just move some
bits around, (approximately 2 clock ticks), rather than to multiply a number



out.  (Can get to around 133 clock ticks).

We will be using shifts a lot when programming the VGA, so make sure you
understand the concepts behind them.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │            PROGRAMMING THE VGA IN ASSEMBLER              │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

I have received quite a bit of mail asking me to cover the VGA.  So for all
those who asked, we'll be spending most of our time, but not all, on
programming the VGA.  After all, doesn't everyone want to code graphics?

When we talk about programming the VGA, we are generally talking about mode
13h, or one of its tweaked relatives.  In standard VGA this is the _only_ way
to use 256 colors, and it's probably one of the easiest modes to use too.
If you've ever tried experimenting with SVGA, you'll understand the nightmare
it is for the programmer in supporting all the different SVGA cards that
exist - except if you use VESA that is, which we'll discuss another time.  The
great thing about standard mode 13h is you know that just about every VGA card
in existence will support it.  People today often ignore mode 13h, thinking
the resolution to be too grainy by today's standards, but don't forget that
Duke Nukem, DOOM, DOOM II, Halloween Harry and most of the Apogee games use
this mode to achieve some great effects.

The great thing about mode 13h - that's 320x200x256 in case you were unaware,
is that accessing VGA RAM is incredibly easy.  As 320 x 200 only equals
64,000, it is quite possible to fit the entire screen into one 64K segment -
leaving out the hell of planes, (or should that be plains of Hell?), and
masking registers.

The bad news is that standard mode 13h really only gives you one page to use,
seriously hampering scrolling and page-flipping.  We'll later cover how to
get into your own modes - and mode X which will avoid these problems.

So, how do you get into the standard mode 13h?

The answer is simple.  We use interrupt 10h - video interrupt, and call
subfunction 00h - set mode.  In Pascal, you could declare a procedure like
this:

Procedure Init300x200;   Assembler;

Asm     { Init300x200 }
   mov   ah, 00h         { Set video mode }
   mov   al, 13h         { Use mode 13h   }
   int   10h             { Do it          }
End;    { Init300x200 }

You may also see:

   mov   ax, 13h



   int   10h

This is perfectly correct, and probably saves one clock tick by not putting
00h in AH and then 13h in AL, but it is more correct to use the first
example.

Okay, so we're in mode 13h, but what can we actually do in it, other than look
at a blank screen?  We could go back to text mode by using:

   mov   ah, 00h
   mov   al, 03h
   int   10h

but that's a little dull.  Why not plot a pixel?

 ────────────────────────────────────────────────────────────────────────────

There are a number of ways you could get a pixel on the screen.  The easiest
way in Assembler is to use interrupts.  You do it like this in Pascal:

Procedure PutPixel(X, Y : Integer; Color : Byte);   Assembler;

Asm     { PutPixel }
   mov   ah, 0Ch        { Draw pixel subfunction        }
   mov   al, [Color]    { Move the color to plot in AL  }
   mov   cx, [X]        { Move the X value into CX      }
   mov   dx, [Y]        { Move the Y value into DX      }
   mov   bx, 1h         { BX = 1, page 1                }
   int   10h            { Plot it                       }
End;    { PutPixel }

However, even though this is in Assembler, it isn't particularly speedy.  Why
you ask?  Because it uses interrupts.  Interrupts are fine for getting in and
out of video modes, turning the cursor on and off, etc... but not for
graphics.

You can think of interrupts like an answering machine.  "The CPU is busy right
now, but if you leave your subfunction after the tone - we'll get back to
you."

Not good.  Let's use that technique we discussed earlier during shifts.  What
we want to do is put the value of the color we want to plot into the VGA
directly.  To do this, we'll need to move the address of the VGA into ES,
and calculate the offset of the pixel we want to plot.  An example of this
is shown below:

Procedure PutPixel(X, Y : Integer; Color : Byte);   Assembler;

Asm     { PutPixel }
   mov   ax, 0A000h     { Move the segment of the VGA into AX,   }
   mov   es, ax         { and now into ES                        }
   mov   bx, [X]        { Move the X value into BX               }
   mov   dx, [Y]        { Move the Y value into DX               }
   mov   di, bx         { Move X into DI                         }
   mov   bx, dx         { Move Y into BX                         }
   shl   dx, 8          { In this part we use shifts to multiply }
   shl   bx, 6          { Y by 320                               }



   add   dx, bx         { Now here we add X onto the above,      }
   add   di, dx         { giving us DI = Y x 320 + X             }
   mov   al, [Color]    { Put the color to plot into AL          }
   stosb                { Put the byte, AL, at ES:DI             }
End;    { PutPixel }

This procedure is fast enough to begin with, though I gave out a much faster
one a few tutorials ago which uses a pretty ingenious technique to get DI.

 ────────────────────────────────────────────────────────────────────────────

Okay, I think that's enough for this week.  Have a play with the PutPixel
routines and see what you can do with them.  For those with a "Peter Norton's
Guide to..." book, see what other procedures you can make using interrupts.

 THINGS TO DO:

    1) We covered a lot in this tutorial, and some important concepts were
       in it.  Make sure you are comfortable with the comparisons, because
       we'll get into testing bits soon.

    2) Make sure you understand the binary -> decimal, decimal -> binary,
       decimal -> hex and hex -> decimal stuff.  Make yourself some example
       sums and test your answers with Windows Calculator.

    3) You _must_ understand shifts.  If you are still having problems,
       make some expressions up on paper, and test your answers with a program
       such as:

       Begin   { Main }
          WriteLn(45 SHL 6);
          ReadLn;
       End.    { Main }

       and/or Windows Calculator.

    4) Have a look at the VGA stuff, and make sure you have grasped the theory
       behind it, because next week we're really going to go into it in
       depth.

Next week I'll also try to give some C/C++ examples as well as the Pascal ones
for all you C programmers out there.

 ────────────────────────────────────────────────────────────────────────────

Next tutorial will cover:

   ■ How the VGA is arranged
   ■ How we can draw lines and circles
   ■ Getting and setting the palette in Assembler
   ■ Fades
   ■ Some C/C++ examples

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.



 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.

" I _never_ write code with bugs, I just add some unintentional features! "

          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                         PART V                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.5
Date     :  15-03-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Well, another week or so seems to have gone by... Another week I should have
been using to accomplish something useful.  Anyway, it seems that the
tutorials have gained a bit more popularity, which is good.

I've also received some demo code from someone who seems to have found the
tutorials of some use.  Please, if you attempt something either with the help
of the tutorials or on your own, please send it to me.  I like to see what
people have made of my work, or just how creative you all are.  If you write
something that I think could be useful for others to learn from, or is just
pretty cool, I'll stick it up on my web site.

Note that I included a starfield demonstration in this week's tutorial just
for the hell of it.  You can run STARS.EXE, or look at STARS.PAS for the full
source.  It's only a simple demo, but it can be used to achieve some very
nice effects.

Now, this week we're firstly going to list a summary of all the instructions
that you should have learnt by now, and a few new ones as well.  Then we'll
take a look at how the VGA is arranged, and cover a simple line routine.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │                THE INSTRUCTION SET SUMMARY               │



         │                                                          │
         └──────────────────────────────────────────────────────────┘

   ■ ADC <DEST>, <SOURCE>        - Name: Add with Carry
                                   Type: 8086+

                                   Description: This instruction adds <SOURCE>
                                   to <DEST> and adds the value stored in the
                                   carry flag, which will be a one or a zero
                                   to <DEST> also.

                                   Basically, DEST = DEST + SOURCE + CF

                                   EG: ADC AX, BX

   ■ ADD <DEST>, <SOURCE>        - Name: Add
                                   Type: 8086+

                                   Description: This instruction adds <SOURCE>
                                   and <DEST>, storing the result in <DEST>.

                                   EG: ADD AX, BX

   ■ AND <DEST>, <SOURCE>        - Name: Boolean AND
                                   Type: 8086+

                                   Description: This instruction performs a
                                   bit by bit comparison of <DEST> and
                                   <SOURCE>, storing the result in <DEST>.

                                   EG: AND 0, 0     = 0
                                       AND 0, 1     = 0
                                       AND 1, 0     = 0
                                       AND 1, 1     = 1

   ■ BT <DEST>, <BIT NUMBER>     - Name: Bit Test
                                   Type: 80386+

                                   Description: This instruction tests
                                   <BIT NUMBER> of <DEST> which can either
                                   be a 16 or 32-bit register or memory
                                   location.  If <DEST> is a 16-bit number
                                   then <BIT NUMBER> can range from 0 - 15,
                                   else if <DEST> is a 32-bit number, then
                                   <BIT NUMBER> may have a value from 0 to 31.

                                   The value held in <BIT NUMBER> of <DEST> is
                                   then copied into the carry flag.

                                   EG: BT   AX, 3
                                       JC   WasEqualToOne

   ■ CALL <DEST>                 - Name: Procedure Call
                                   Type: 8086+



                                   Description: This instruction simply calls
                                   a subroutine.  In more technical terms, it
                                   pushes the address of the next instruction,
                                   IP, onto the stack, and then sets the
                                   instruction pointer, IP, to the value
                                   specified by <DEST>.

                                   EG: CALL MyProc

   ■ CBW                          - Name: Convert Byte to Word
                                    Type: 8086+

                                    Description: This instruction extends the
                                    byte in AL to AX.

                                    EG: MOV   AL, 01h
                                        CBW
                                        ADD   BX, AX   ; Do something with AX

   ■ CLC                          - Name: Clear Carry Flag
                                    Type: 8086+

                                    Description: This instruction clears the
                                    carry flag in the flags register to 0.

                                    EG: CLC

   ■ CLD                          - Name: Clear Direction Flag
                                    Type: 8086+

                                    Description: This instruction clears the
                                    direction flag in the flags register to
                                    0.  When the direction flag is 0, any
                                    string instructions increment the index
                                    registers SI and DI.

                                    EG: CLD

   ■ CLI                          - Name: Clear Interrupt Flag
                                    Type: 8086+

                                    Description: This instruction clears the
                                    interrupt flag in the flags register to
                                    0, thus disabling hardware interrupts.

                                    EG: CLI

   ■ CMC                          - Name: Complement the Carry Flag
                                    Type: 8086+

                                    Description: This instruction checks the
                                    value currently held in the carry flag.
                                    If it is 0 - it becomes a 1 and if it is
                                    1 - it becomes a 0.



                                    EG: BT   AX, 1    ; Test bit 1 of AX
                                        JC   WasOne
                                        JMP  Done

                                        WasOne:
                                        CMC           ; Return CF to 0

                                        Done:

   ■ CMP <VALUE1>, <VALUE2>       - Name: Compare Integer
                                    Type: 8086+

                                    Description: This instruction compares
                                    <VALUE1> and <VALUE2> and reflects the
                                    comparison in the flags.

                                    EG: CMP AX, BX

                                    See also the Jcc instructions.

   ■ CWD                          - Name: Convert Word to Doubleword
                                    Type: 8086+

                                    Description: This instruction extends the
                                    word in AX to the DX:AX pair.

                                    EG: CWD

   ■ DEC <VALUE>                  - Name: Decrement
                                    Type: 8086+

                                    Description: This instruction subtracts
                                    one from the value held in <VALUE> and
                                    stores the result in <VALUE>.

                                    EG: DEC AX

   ■ DIV <VALUE>                  - Name: Unsigned Division
                                    Type: 8086+

                                    Description: This instruction divides
                                    <VALUE> by either AX for a byte, DX:AX for
                                    a word or EDX:EAX for a doubleword.

                                    For a byte, the quotient is returned in
                                    AL and the remainder in AH, for a word the
                                    quotient is returned in AX and the
                                    remainder in DX and for a DWORD, the
                                    quotient is returned in EAX and the
                                    remainder in EDX.

                                    EG: MOV   AX, 12
                                        MOV   BH, 5
                                        DIV   BH
                                        MOV   Quotient, AL



                                        MOV   Remainder, AH

   ■ IN <ACCUMULATOR>, <PORT>     - Name: Input from I/O port
                                    Type: 8086+

                                    Description: This instruction reads a
                                    value from one of the 65536 hardware ports
                                    into the specified accumulator.

                                    AX and AL are commonly used for input
                                    ports, and DX is commonly used to
                                    identify the port.

                                    EG: IN    AX, 72h

                                        MOV   DX, 3C7h
                                        IN    AL, DX

   ■ INC <VALUE>                  - Name: Increment
                                    Type: 8086+

                                    Description: This instruction adds one to
                                    the number held in <VALUE>, and stores
                                    the result in <VALUE>.

                                    EG: MOV   AX, 13h   ; AX = 13h
                                        INC   AX        ; AX = 14h

   ■ INT <INTERRUPT>              - Name: Generate an Interrupt
                                    Type: 8086+

                                    Description: This instruction saves the
                                    current flags and instruction pointer on
                                    the stack, and then calls <INTERRUPT>
                                    based on the value in AH.

                                    EG:   MOV   AH, 00h   ; Set video mode
                                          MOV   AL, 13h   ; Video mode 13h
                                          INT   10h       ; Generate interrupt

   ■ Jcc                          - Name: Jump if Condition
                                    Type: 8086+

   I'm not going to repeat myself for all 32 of them, just look in Tutorial
   Three for the entire list of them.  Bear in mind that it would be a good
   idea to call CMP, OR, DEC or something similar before you use one of these
   instructions. :)

   EG: DEC   AX
       JZ    AX_Has_Reached_Zero

   ■ JMP <DEST>                   - Name: Jump
                                    Type: 8086+

                                    Description: This instruction simply



                                    loads a new value, <DEST>, into the
                                    instruction pointer, thus transferring
                                    control to another part of the code.

                                    EG: JMP   MyLabel

   ■ LAHF                         - Name: Load AH with Flags
                                    Type: 8086+

                                    Description: This instruction copies the
                                    low bytes of the flags register into AH.
                                    The contents of AH will look something
                                    like the following after the instruction
                                    has been executed:

              ┌──────┬────┬────┬────┬────┬────┬────┬────┬────┐
              │ Flag │ SF │ ZF │ -- │ AF │ -- │ PF │ -- │ CF │
              ├──────┼────┼────┼────┼────┼────┼────┼────┼────┤
              │ Bit  │ 07 │ 06 │ 05 │ 04 │ 03 │ 02 │ 01 │ 00 │
              └──────┴────┴────┴────┴────┴────┴────┴────┴────┘

            You may now test the bits individually, or perform an
          instruction similar to the follow to get an individual flag:

          EG: LAHF
              SHR   AH, 6
              AND   AH, 1   ; AH now contains the ZF flag.

   ■ LEA <DEST>, <SOURCE>         - Name: Load Effective Address
                                    Type: 8086+

                                    Description: This instruction loads the
                                    memory address that <SOURCE> resides in,
                                    into <DEST>.

                                    EG: I use   LEA   SI, Str  in a procedure
                                        of mine which puts a string on the
                                        screen very fast.

   ■ LOOP <LABEL>                 - Name: Decrement CX and Branch
                                    Type: 8086+

                                    Description: This instruction is a form
                                    of the For...Do loop that exists in most
                                    high-level languages.  Basically it loops
                                    back to a label, or memory offset, until
                                    CX = 0.

                                    EG: MOV   CX, 12

                                        DoSomeStuff:
                                           ;...
                                           ;...
                                           ;... This will be repeated 12 times

                                        LOOP DoSomeStuff



   ■ Lseg <DEST>, <SOURCE>        - Name: Load Segment Register
                                    Type: 8086+

                                    Description: This instruction exists in
                                    several forms.  All accept the same
                                    syntax, in which <SOURCE> specifies a
                                    48-bit pointer, consisting of a 32-bit
                                    offset and a 16-bit selector.  The 32-bit
                                    offset is loaded into <DEST>, and the
                                    selector is loaded into the segment
                                    register specified by seg.

                                    The following forms exist:

                                    LDS
                                    LES
                                    LFS     * 32-bit
                                    LGS     * 32-bit
                                    LSS

                                    EG: LES   SI, A_Pointer

   ■ MOV <DEST>, <SOURCE>         - Name: Move Data
                                    Type: 8086+

                                    Description: This instruction copies
                                    <SOURCE> into <DEST>.

                                    EG: MOV   AX, 3Eh
                                        MOV   SI, 12h

   ■ MUL <SOURCE>                 - Name: Unsigned Multiplication
                                    Type: 8086+

                                    Description: This instruction multiplies
                                    <SOURCE> by the accumulator, which depends
                                    on the size of <SOURCE>.

                                    If <SOURCE> is a byte then:

                                    * AL is the multiplicand;
                                    * AX is the product.

                                    If <SOURCE> is a word then:

                                    * AX is the multiplicand;
                                    * DX:AX is the product.

                                    If <SOURCE> is a doubleword then:

                                    * EAX is the multiplicand;
                                    * EDX:EAX is the product.

                                    Note: The flags are left in an un-touched
                                    state except for OF and CF, which are
                                    cleared to 0 if the high byte, word or



                                    dword of the product is 0.

                                    EG: MOV   AL, 3
                                        MUL   10
                                        MOV   Result, AX

   ■ NEG <VALUE>                  - Name: Negate
                                    Type: 8086+

                                    Description: This instruction subtracts
                                    <VALUE> from 0, resulting in a two's
                                    complement negation of <VALUE>.

                                    EG: MOV   AX, 03h
                                        NEG   AX       ; AX = -3

   ■ NOT <VALUE>                  - Name: Boolean Complement
                                    Type: 8086+

                                    Description: This instruction inverts the
                                    state of each bit in the operand.

                                    EG: NOT   CX

   ■ OR <DEST>, <SOURCE>          - Name: Boolean OR
                                    Type: 8086+

                                    Description: This instruction performs a
                                    boolean OR operation between each bit of
                                    <DEST> and <SOURCE>, storing the result
                                    in <DEST>.

                                    EG: OR 0, 0     = 0
                                        OR 0, 1     = 1
                                        OR 1, 0     = 1
                                        OR 1, 1     = 1

   ■ OUT <PORT>, <ACCUMULATOR>    - Name: Output to Port
                                    Type: 8086+

                                    Description: This instruction outputs the
                                    value in the accumulator to <PORT>.  Using
                                    the DX register to pass the port to OUT,
                                    you may access up to 65,536 ports.

                                    EG: MOV   DX, 378h
                                        OUT   DX, AX

   ■ POP <REGISTER>               - Name: Pop Register
                                    Type: 8086+

                                    Description: This instruction pops the
                                    current value off the stack, and places
                                    it into <REGISTER>.



                                    EG: POP   AX

   ■ POPA                         - Name: Pop All General Registers
                                    Type: 80186+

                                    Description: This instruction pops all
                                    the 16-bit general purpose registers off
                                    the stack, except for SP.

                                    It is the same as:

                                    POP   AX
                                    POP   BX
                                    POP   CX
                                    ...

                                    EG: POPA

   ■ POPF                         - Name: Pop Stack into Flags
                                    Type: 8086+

                                    Description: This instruction pops the
                                    low byte of the flags off the stack.

                                    EG: POPF

   ■ PUSH <REGISTER>              - Name: Push Register
                                    Type: 8086+

                                    Description: This instruction pushes
                                    <REGISTER> onto the stack.

                                    EG: PUSH  AX

   ■ PUSHA                        - Name: Push All General Registers
                                    Type: 80186+

                                    Description: This instruction pushes all
                                    16-bit general purpose registers onto the
                                    stack.

                                    It is the same as:

                                    PUSH  AX
                                    PUSH  BX
                                    PUSH  CX
                                    ...

                                    EG: PUSHA

   ■ PUSHF                        - Name: Push Flags
                                    Type: 8086+

                                    Description: This instruction pushes the
                                    low byte of the flags of the stack.



                                    EG: PUSHF

   ■ REP                          - Name: Repeat String Prefix
                                    Type: 8086+

                                    Description: This instruction will repeat
                                    the following instructing for the number
                                    of times specified in the CX register.

                                    EG: MOV   CX, 6
                                        REP   STOSB    ; Store 6 bytes

   ■ RET                          - Name: Near Return from Subroutine
                                    Type: 8086+

                                    Description: This instruction returns IP
                                    to the value it had held before the
                                    last CALL instruction.  RET, or RETF for a
                                    far jump, must be called when using
                                    stand alone assembler.

                                    EG: RET

   ■ ROL <DEST>, <VALUE>          - Name: Rotate Left
                                    Type: 8086+

                                    Description: This instruction rotates
                                    <DEST> <VALUE> times.  A rotation is
                                    achieved by shifting <DEST> once, then
                                    transferring the bit shifted off the high
                                    end to the low-order position of <DEST>.

                                    EG: ROL   AX, 3

   ■ ROR <DEST>, <VALUE>          - Name: Rotate Right
                                    Type: 8086+

                                    Description: This instruction rotates
                                    <DEST> <VALUE> times.  A rotation is
                                    achieved by shifting <DEST> once, and
                                    transferring the bit shifted off the low
                                    end to the high-order position of <DEST>.

                                    EG: ROR    BX, 5

   ■ SAHF                         - Name: Store AH in Flags
                                    Type: 8086+

                                    Description: This instruction loads the
                                    contents of the AH register into bits
                                    7, 6, 4, 2 and 0 of the flags register.

                                    EG: SAHF



   ■ SBB <DEST>, <SOURCE>         - Name: Subtract with Borrow
                                    Type: 8086+

                                    Description: This instruction subtracts
                                    <SOURCE> from <DEST>, and decrements
                                    <DEST> by one if the carry flag is set,
                                    storing the result in <DEST>.

                                    Basically, <DEST> = <DEST> - <SOURCE> - CF

                                    EG: SBB   AX, BX

   ■ SHL <DEST>, <VALUE>         - Name: Shift Left
                                   Type: 8086+

                                   Description: This instruction shifts <DEST>
                                   left by <VALUE>.  I'm not going to go into
                                   the theory behind shifts again.  If you
                                   are unsure as to what this instruction
                                   does, please refer to Tutorial Four.

                                   EG: SHL   AX, 5

   ■ SHR <DEST>, <VALUE>         - Name: Shift Right
                                   Type: 8086+

                                   Description: This instruction shifts <DEST>
                                   right by <VALUE>.  Please refer to
                                   Tutorial Four for the theory behind shifts.

                                   EG: SHR   DX, 1

   ■ STC                         - Name: Set Carry Flag
                                   Type: 8086+

                                   Description: This instruction assigns the
                                   value of the carry flag to one.

                                   EG: STC

   ■ STD                         - Name: Set Direction Flag
                                   Type: 8086+

                                   Description: This instruction sets the
                                   value of the carry flag to one.  This
                                   instructs all string operations to
                                   decrement the index registers.

                                   EG: STD
                                       REP STOSB   ; DI is being decremented

   ■ STI                         - Name: Set Interrupt Flag
                                   Type: 8086+



                                   Description: This instruction sets the
                                   value of the interrupt flag to one, thus
                                   allowing hardware interrupts to occur.

                                   EG: CLI      ; Stop interrupts
                                       ...      ; Perform crucial function
                                       STI      ; Enable interrupts

   ■ STOS                        - Name: Store String
                                   Type: 8086+

                                   Description: This instruction exists in the
                                   following forms:

                                   STOSB      - Store a byte       - AL
                                   STOSW      - Store a word       - AX
                                   STOSD      - Store a doubleword - EAX

                                   The instructions write the current contents
                                   of the accumulator to the memory location
                                   pointed to by ES:DI.  It then increments
                                   or decrements DI according to the operand
                                   used, and the value in the direction flag.

                                   EG: MOV   AX, 0A000h
                                       MOV   ES, AX
                                       MOV   AL, 03h
                                       MOV   DI, 0
                                       STOSB           ; Store 03 at ES:DI,
                                                       ; which just happens
                                       ; to be at the top of the screen in
                                       ; mode 13h

   ■ SUB <DEST>, <SOURCE>        - Name: Subtract
                                   Type: 8086+

                                   Description: This instruction subtracts
                                   <SOURCE> from <DEST>, storing the result
                                   in <DEST>.

                                   EG: SUB   ECX, 12

   ■ TEST <DEST>, <SOURCE>       - Name: Test Bits
                                   Type: 8086+

                                   Description: This instruction performs a
                                   bit-by-bit AND operation on <SOURCE> and
                                   <DEST>.  The result is reflected in the
                                   flags, and they are set as the would be
                                   after an AND operation.

                                   EG: TEST   AL, 0Fh   ; Check to see if any
                                                        ; bits set in the low
                                                        ; nibble of AL

   ■ XCHG <VALUE1>, <VALUE2>     - Name: Exchange



                                   Type: 8086+

                                   Description: This instruction exchanges the
                                   values in <VLAUE1> and <VALUE2>.

                                   EG: XCHG   AX, BX

   ■ XOR <DEST>, <SOURCE>        - Name: Exclusive Boolean OR
                                   Type: 8086+

                                   Description: This instruction performs a
                                   bit-by-bit exclusive OR operation on
                                   <SOURCE> and <DEST>.  The operation is
                                   defined as follows:

                                   XOR   0, 0    = 0
                                   XOR   0, 1    = 1
                                   XOR   1, 0    = 1
                                   XOR   1, 1    = 0

                                   EG: XOR   AX, BX

 ────────────────────────────────────────────────────────────────────────────

Phew!  What a lot there are, and we only covered the basic ones!  You are
not expected to understand each and every one of them though.  You probably
saw words like 'Two's Complement', and thought - "What the hell does that
mean?".

Do not worry about them for now.  We'll continue at our usual pace, and
introduce the new instructions above one by one, explaining them as we go.  If
you already understand them now, then this is an added bonus.  You will also
notice that there were a lot of 8086 instructions above.  There are actually
very few instances where it is necessary to use a 386 or 486 instruction,
let alone Pentium instructions.

Anyway, before we press on with the VGA, I'll just list the speed at which
each of the above instructions execute at, so you can use this to gauge how
fast your Assembler routines are.

 ────────────────────────────────────────────────────────────────────────────

 Instruction      386 Clock Ticks      486 Clock Ticks

 ────────────────────────────────────────────────────────────────────────────

    ADC                  2                     1
    ADD                  2                     1
    AND                  2                     1
    BT                   3                     3
    CALL                 7+m                   3
    CBW                  3                     3
    CLC                  2                     2
    CLD                  2                     2
    CLI                  5                     3
    CMC                  2                     2
    CMP                  2                     1



    CWD                  2                     3
    DEC                  2                     1
    DIV                  -                     -
        - Byte           9-14                  13-18
        - Word           9-22                  13-26
        - DWord          9-38                  13-42
    IN                   12/13                 14
    INC                  2                     1
    INT                  depends               depends
    Jcc                  -                     -
        - Branch         7+m                   3
        - No Branch      3                     1
    JMP                  7+m                   3
    LAHF                 2                     3
    LEA                  2                     1
    LOOP                 11                    6
    Lseg                 7                     6
    MOV                  2                     1
    MUL                  -                     -
        - Byte           9-14                  13-18
        - Word           9-22                  13-26
        - DWord          9-38                  13-42
    NEG                  2                     1
    NOT                  2                     1
    OR                   2                     1
    OUT                  10/11                 16
    POP                  4                     1
    POPA                 24                    9
    POPF                 5                     9
    PUSH                 2                     1
    PUSHA                18                    11
    PUSHF                4                     4
    REP                  depends               depends
    RET                  10+m                  5
    ROL                  3                     3
    ROR                  3                     3
    SAHF                 3                     2
    SBB                  2                     1
    SHL                  3                     3
    SHR                  3                     3
    STC                  2                     2
    STD                  2                     2
    STI                  3                     5
    STOS                 4                     5
    SUB                  2                     1
    TEST                 2                     1
    XCHG                 3                     3
    XOR                  2                     1

 Note: m = Number of components in next instruction executed.

Ugh, I never want to see another clock-tick again! Now, on with the fun stuff
- the VGA!

 ────────────────────────────────────────────────────────────────────────────

You've probably noticed by now that your video card has more than 256K of RAM.
(If you haven't, then these tutorials are probably not for you.)  Even if
you have only 256K of RAM, like my old 386, you'll still be able to get



into mode 13h - 320x200x256.  However, this raises some questions.

Multiply 320 by 200 and you'll notice that you only need 64,000 bytes of
memory to store a single screen.  (The VGA actually gives us 64K, which is
65,536 bytes for the unaware.)  What happened to the remaining 192K or so?

Well, the VGA is actually arranged in bitplanes, like this:

                     ┌────────3───────┐
                   ┌─┴──────2───────┐ │
                 ┌─┴──────1───────┐ │ │
               ┌─┴──────0───────┐ │ │ │
               │                │ │ │ │
               │                │ │ │ │
               │     64,000     │ │ ├─┘
               │                │ ├─┘
               │                ├─┘
               └────────────────┘

Each plane being 64,000 bytes long.  Here's how it works:

 A pixel at 0, 0 is mapped in plane 0 at offset 0;
 A pixel at 1, 0 is mapped in plane 1 at offset 0;
 A pixel at 2, 0 is mapped in plane 2 at offset 0;
 A pixel at 3, 0 is mapped in plane 3 at offset 0;
 A pixel at 4, 0 is mapped in plane 0 at offset 1   ... and so on ...

Because of the pixels being chained across all four planes, it is impossible
to use multiple pages in mode 13h without having to resort to using a
virtual screen, or something similar.

The automatic mapping of the pixels is handled completely by the video card,
so you can blindly work away without even knowing about the four bitplanes if
you wish.

We'll go onto how we can get around this, by entering a special display mode,
known as Mode X, later, but for now, let's just see what we can do in plain
old mode 13h.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │                      DRAWING LINES                       │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

We've gone a little over the size that I'd planned to go to for this tutorial,
and I had intended to cover Bresenham's Line Algorithm, but that'll have to
wait till next week.  However, I will cover how to draw a simple horizontal
line in Assembler.

  An Assembler Horizontal Line Routine:
 ---------------------------------------

First we'll need to point ES to the VGA.



This should do the trick:

   MOV   AX, 0A000h
   MOV   ES, AX

Now, we'll need to read the X1, X2 and Y values into registers, so something
like this should work:

   MOV   AX, X1    ; AX now equals the X1 value
   MOV   BX, Y     ; BX now equals the Y  value
   MOV   CX, X2    ; CX now equals the X2 value

It will be necessary to work out how long the line is, so we'll use CX to
store this, seeing as:  i) CX already holds the X2 value, and  ii) we'll be
using a REP instruction, which will use CX as a counter.

   SUB   CX, AX    ; CX = X2 - X1

Now we'll need to work out what DI will be for the very first pixel we'll be
plotting, so we'll use what we did in the PutPixel routine:

   MOV   DI, AX    ; DI = X1
   MOV   DX, BX    ; DX = Y
   SHL   BX, 8     ; Shift Y left 8
   SHL   DX, 6     ; Shift Y left 6
   ADD   DX, BX    ; DX = Y SHL 8 + Y SHL 6
   ADD   DI, DX    ; DI = Y x 320 + X

We have the offset of the first pixel now, so all we have to do is put the
color we want to draw in, in AL, and use STOSB to plot the rest of the line.

   MOV   AL, Color ; Move the color to plot with into AL
   REP   STOSB     ; Plot CX pixels

Note that we used STOSB because it will increment DI for us, thus saving
a lot of MOV's and INC's.  Now, depending on what language you'll use to
implement this in, you'll get something like:

   void Draw_Horizontal_Line(int x1, int x2, int y, char color);
   {
   asm {
      mov   ax, 0xa000
      mov   es, ax        ; Point ES to the VGA

      mov   ax, x1        ; AX = X1
      mov   bx, y         ; BX = Y
      mov   cx, x2        ; CX = X2

      sub   cx, ax        ; CX = Difference of X2 and X1

      mov   di, ax        ; DI = X1
      mov   dx, bx        ; DX = Y
      shl   bx, 8         ; Y SHL 8
      shl   dx, 6         ; Y SHL 6
      add   dx, bx        ; DX = Y SHL 8 + Y SHL 6
      add   di, dx        ; DI = Offset of first pixel

      mov   al, color     ; Put the color to plot in AL



      rep   stosb         ; Draw the line
      }
   }

 ────────────────────────────────────────────────────────────────────────────

We'll now we've covered how to draw a simple horizontal line.  The above
routine isn't blindingly fast, but it isn't all that bad either.  Just
changing the calculation of DI part to look like the fast PutPixel I gave out
in Tutorial Two would probably double the speed of this routine.

My own horizontal line routine is probably about 4 to 5 times as fast as this
one, so in the future, I'll show you how to optimize this one fully.  Next
week we'll also cover how to get and set the palette, and how we can draw
circles.  I'm sorry it didn't make it into this tutorial, but this one sort of
grew a bit...

 THINGS TO DO:
---------------

   1) Write a vertical line routine based on the one above.  Clue: You'll
      need to increment DI by 320 at some stage.

   2) Go over the list of Assembler instructions, and learn as many as you
      can.

   3) Have a look at the Starfield I wrote, and try to fix the bugs in it.
      See what you can do with it.

 ────────────────────────────────────────────────────────────────────────────

Sorry again that I didn't include the things I said I would last week, but
as I said, the tutorial just grew, and I'm a bit behind with some other
projects I'm supposed to be working on.

Next week's tutorial _will_ include:

   ■ Line algorithms and examples;
   ■ A circle algorithm;
   ■ The palette;
   ■ Something else that you ought to know...

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!



- Adam.

          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART VI                         ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.3
Date     :  13-04-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Hello again, Assembler coders.  This edition is a little late, but I had
a lot of other things to finish, and I'm working on a game of my own now.
It's a strategy game, like Warlords II, and I think I'm going to have to
write most of the code for it in 640x480, not my beloved 320x200 - but I may
change my mind.  Heck, the amount of games I started writing but never got
around to finishing is pretty large, so this one may not get all that far.

Anyway, I said we'd be having a look at some line/circle routines this week,
so here we go...

 ────────────────────────────────────────────────────────────────────────────

Last week we came up with the following horizontal line routine -

   mov   ax, 0A000h
   mov   es, ax          ; Point ES to the VGA

   mov   ax, X1
   mov   bx, Y           ; BX = Y
   mov   cx, X2          ; CX = X2

   sub   cx, ax          ; CX = Difference of X2 and X1

   mov   di, ax          ; DI = X1
   mov   dx, bx          ; DX = Y
   shl   bx, 8           ; Y SHL 8
   shl   dx, 6           ; Y SHL 6
   add   dx, bx          ; DX = Y SHL 8 + Y SHL 6
   add   di, dx          ; DI = Offset of first pixel

   mov   al, color       ; Put the color to plot in AL
   rep   stosb           ; Draw the line

Now although this routine was much faster than the BGI routines, (or whatever
your compiler provides), it could be improved upon greatly.  If we go through



the routine with the list of clock ticks provided in the last tutorial, you'll
see that it chews up quite a few.

I'll leave optimization up to you for now, (we'll get onto that in a later
tutorial), but either replacing the STOSB with MOV ES:[DI], AL or STOSW will
speed things up quite a bit.  Don't forget that if you decide to use a loop,
to whack words onto the VGA, you will have to decrement CX by one.

Now, lets get on to a vertical line.  We'll have to calculate the offset of
the first pixel as we did with the horizontal line routine, so something like
this should do:

   mov   ax, 0A000h      ; Put the VGA segment into AX
   mov   es, ax          ; Point ES to the VGA

   mov   ax, Y1          ; Move the first Y value into AX
   shl   ax, 6           ; Y x 2 to the power 6
   mov   di, ax          ; Move the new Y value into DI
   shl   ax, 2           ; Now we have Y = Y x 320
   add   di, ax          ; Add that value onto DI
   add   di, X           ; Add the X value onto DI

Now a bit of basic housekeeping...

   mov   cx, Y2          ; Store Y2 in CX
   mov   al, Color       ; Store the color to plot with in AL
   sub   cx, Y1          ; CX = vertical length of line

And now the final loop...

Plot:
   mov   es:[di], al     ; Put the a pixel at the current offset
   add   di, 320         ; Move down to the next row
   dec   cx              ; Decrement CX by one
   jnz   Plot            ; If CX <> 0, then keep on plotting

Not a fantastic routine, but it's pretty good all the same.  Note how it was
possible to perform a comparison after DEC CX.  This is an extremely useful
concept, so don't forget that it is possible.

Have a play around with the code, and try and speed it up.  Try other methods
of finding the offset, or different methods of flow control.

 ────────────────────────────────────────────────────────────────────────────

Now, that was the easy stuff.  We are now going to have a look at a line
routine capable of drawing diagonal lines.

The following routine was picked up from SWAG, author unknown, and is an
ideal routine to demonstrate a line algorithm.  It is in great need of
optimization, so this can be a task for you - if you wish.  Some of the
points needing addressing are:



   1) Whoever wrote it had never heard of XCHG - this would save quite a
      few clock ticks;

   2) It makes one of the great sins of unoptimized code - it will say, move
      a value to AX, and then perform an operation involving AX in the next
      instruction, thus incurring a penalty cycle.  (We'll talk about this
      next week).

   3) It works with BYTES not WORDS, so the speed of writing to the VGA could
      be doubled if words were used.

   4) And the biggest sin of all, it uses a MUL to find the offset.  Try using
      shifts or an exchange to speed things up.

Anyway, I put the comments in, and I feel that it is fairly self explanatory
as it is, so I won't go over how it works.  You should be able to pick that
up for yourself.  Work through the routine, and see how the gradient for the
line is worked out.

Procedure Line(X1, Y1, X2, Y2 : Word; Color : Byte);   Assembler;

Var
   DeX          : Integer;
   DeY          : Integer;
   IncF         : Integer;

Asm     { Line }
   mov   ax, [X2]      { Move X2 into AX                                    }
   sub   ax, [X1]      { Get the horiz length of the line -  X2 - X1        }
   jnc   @Dont1        { Did X2 - X1 yield a negative result?               }
   neg   ax            { Yes, so make the horiz length positive             }

@Dont1:
   mov   [DeX], ax     { Now, move the horiz length of line into DeX        }
   mov   ax, [Y2]      { Move Y2 into AX                                    }
   sub   ax, [Y1]      { Subtract Y1 from Y2, giving the vert length        }
   jnc   @Dont2        { Was it negative?                                   }
   neg   ax            { Yes, so make it positive                           }

@Dont2:
   mov   [DeY], ax     { Move the vert length into DeY                      }
   cmp   ax, [DeX]     { Compare the vert length to horiz length            }
   jbe   @OtherLine    { If vert was <= horiz length then jump              }

   mov   ax, [Y1]      { Move Y1 into AX                                    }
   cmp   ax, [Y2]      { Compare Y1 to Y2                                   }
   jbe   @DontSwap1    { If Y1 <= Y2 then jump, else...                     }
   mov   bx, [Y2]      { Put Y2 in BX                                       }
   mov   [Y1], bx      { Put Y2 in Y1                                       }
   mov   [Y2], ax      { Move Y1 into Y2                                    }
                       { So after all that.....                             }
                       { Y1 = Y2 and Y2 = Y1                                }

   mov   ax, [X1]      { Put X1 into AX                                     }
   mov   bx, [X2]      { Put X2 into BX                                     }
   mov   [X1], bx      { Put X2 into X1                                     }
   mov   [X2], ax      { Put X1 into X2                                     }

@DontSwap1:



   mov   [IncF], 1     { Put 1 in IncF, ie, plot another pixel              }
   mov   ax, [X1]      { Put X1 into AX                                     }
   cmp   ax, [X2]      { Compare X1 with X2                                 }
   jbe   @SkipNegate1  { If X1 <= X2 then jump, else...                     }
   neg   [IncF]        { Negate IncF                                        }

@SkipNegate1:
   mov   ax, [Y1]      { Move Y1 into AX                                    }
   mov   bx, 320       { Move 320 into BX                                   }
   mul   bx            { Multiply 320 by Y1                                 }
   mov   di, ax        { Put the result into DI                             }
   add   di, [X1]      { Add X1 to DI, and tada - offset in DI              }
   mov   bx, [DeY]     { Put DeY in BX                                      }
   mov   cx, bx        { Put DeY in CX                                      }
   mov   ax, 0A000h    { Put the segment to plot in, in AX                  }
   mov   es, ax        { ES points to the VGA                               }
   mov   dl, [Color]   { Put the color to use in DL                         }
   mov   si, [DeX]     { Point SI to DeX                                    }

@DrawLoop1:
   mov   es:[di], dl   { Put the color to plot with, DL, at ES:DI           }
   add   di, 320       { Add 320 to DI, ie, next line down                  }
   sub   bx, si        { Subtract DeX from BX, DeY                          }
   jnc   @GoOn1        { Did it yield a negative result?                    }
   add   bx, [DeY]     { Yes, so add DeY to BX                              }
   add   di, [IncF]    { Add the amount to increment by to DI               }

@GoOn1:
   loop  @DrawLoop1    { No negative result, so plot another pixel          }
   jmp   @ExitLine     { We're all done, so outta here!                     }

@OtherLine:
   mov   ax, [X1]      { Move X1 into AX                                    }
   cmp   ax, [X2]      { Compare X1 to X2                                   }
   jbe   @DontSwap2    { Was X1 <= X2 ?                                     }
   mov   bx, [X2]      { No, so move X2 into BX                             }
   mov   [X1], bx      { Move X2 into X1                                    }
   mov   [X2], ax      { Move X1 into X2                                    }
   mov   ax, [Y1]      { Move Y1 into AX                                    }
   mov   bx, [Y2]      { Move Y2 into BX                                    }
   mov   [Y1], bx      { Move Y2 into Y1                                    }
   mov   [Y2], ax      { Move Y1 into Y2                                    }

@DontSwap2:
   mov   [IncF], 320   { Move 320 into IncF, ie, next pixel is on next row  }
   mov   ax, [Y1]      { Move Y1 into AX                                    }
   cmp   ax, [Y2]      { Compare Y1 to Y2                                   }
   jbe   @SkipNegate2  { Was Y1 <= Y2 ?                                     }
   neg   [IncF]        { No, so negate IncF                                 }

@SkipNegate2:
   mov   ax, [Y1]      { Move Y1 into AX                                    }
   mov   bx, 320       { Move 320 into BX                                   }
   mul   bx            { Multiply AX by 320                                 }
   mov   di, ax        { Move the result into DI                            }
   add   di, [X1]      { Add X1 to DI, giving us the offset                 }
   mov   bx, [DeX]     { Move DeX into BX                                   }
   mov   cx, bx        { Move BX into CX                                    }
   mov   ax, 0A000h    { Move the address of the VGA into AX                }
   mov   es, ax        { Point ES to the VGA                                }



   mov   dl, [Color]   { Move the color to plot with in DL                  }
   mov   si, [DeY]     { Move DeY into SI                                   }

@DrawLoop2:
   mov   es:[di], dl   { Put the byte in DL at ES:DI                        }
   inc   di            { Increment DI by one, the next pixel                }
   sub   bx, si        { Subtract SI from BX                                }
   jnc   @GoOn2        { Did it yield a negative result?                    }
   add   bx, [DeX]     { Yes, so add DeX to BX                              }
   add   di, [IncF]    { Add IncF to DI                                     }

@GoOn2:
   loop  @DrawLoop2    { Keep on plottin'                                   }

@ExitLine:
                       { All done!                                          }
End;

I don't think I made any mistakes with the commenting, but I am pretty tired,
and I haven't handy any caffeine for days - let alone hours, so if you spot a
mistake - please let me know.

I was going to include a Circle algorithm, but I couldn't get mine to work
in Assembler - all the floating point math might have something to do with
it.  I could include one written in a high level language, but this is meant
to be an Assembler tutorial, not a graphics one.  However, if enough people
shout for one...

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │              THE INS AND OUTS OF IN AND OUT              │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

IN and OUT are a very important part of Assembler coding.  They allow you to
directly send/receive data from any of the PC's 65,536 hardware ports, or
registers.  The basic syntax is as follows:

   ■ IN <ACCUMULATOR>, <PORT>     - Name: Input from I/O port
                                    Type: 8086+

                                    Description: This instruction reads a
                                    value from one of the 65536 hardware ports
                                    into the specified accumulator.

                                    AX and AL are commonly used for input
                                    ports, and DX is commonly used to
                                    identify the port.

                                    EG: IN    AX, 72h

                                        MOV   DX, 3C7h
                                        IN    AL, DX



   ■ OUT <PORT>, <ACCUMULATOR>    - Name: Output to Port
                                    Type: 8086+

                                    Description: This instruction outputs the
                                    value in the accumulator to <PORT>.  Using
                                    the DX register to pass the port to OUT,
                                    you may access up to 65,536 ports.

                                    EG: MOV   DX, 378h
                                        OUT   DX, AX

Okay, that wasn't very helpful, as it didn't tell you much about how to use
it - let alone what to use it for.  Well, if you intend to work with the VGA
much, you'll have to be able to program its internal registers.  Similar to
the registers that you've been working with up until now, you can think of
changing them just like interrupts, except:  1) You pass the value to the
port, and that's it;  and  2) It is pretty near instantaneous.

As an example, we'll cover how to set and get the palette by directly
controlling the VGA's hardware.

Now, the VGA has a lot of registers, but the next three you'd better get to
know pretty well:

   ■ 03C7h       - PEL Address Register (Read)
                   Sets the palette in read mode

   ■ 03C8h       - PEL Address Register (Write)
                   Sets the palette in write mode

   ■ 03C9h       - PEL Data Register (Read/Write)
                   Read in, or write 3 RGB values, every 3rd write, the
                   index, or color you are setting, is incremented by one.

What all this means is -

If we were to set a color's RGB value, we'd send the value of the color we
wanted to change to 03C8h, then read in 3 values from 03C9h.  In Assembler,
we'd do this:

   mov   dx, 03C8h        ; Put the DAC read register in DX
   mov   al, [Color]      ; Put the color's value in AL
   out   dx, al           ; Send AL to port DX
   inc   dx               ; Now use port 03C9h
   mov   al, [R]          ; Put the new RED value in AL
   out   dx, al           ; Send AL to port DX
   mov   al, [G]          ; Put the new GREEN value in AL
   out   dx, al           ; Send AL to port DX
   mov   al, [B]          ; Put the new BLUE value in AL
   out   dx, al           ; Send AL to port DX

And that would do things nicely.  To read the palette, we'd do this:

   mov   dx, 03C7h        ; Put the DAC write register in DX
   mov   al, [Color]      ; Put the color's value in AL
   out   dx, al           ; Send AL to port DX
   add   dx, 2            ; Now use port 03C9h



   in    al, dx           ; Put the value got from port DX in AL
   les   di, [R]          ; Point DI to the R variable - this came from Pascal
   stosb                  ; Store AL in R

   in    al, dx           ; Put the value got from port DX in AL
   les   di, [G]          ; Point DI to the G variable
   stosb                  ; Store AL in G

   in    al, dx           ; Put the value got from port DX in AL
   les   di, [B]          ; Point DI to the B variable
   stosb                  ; Store AL in B

Note how that routine was coded differently.  This was originally a Pascal
routine, and as Pascal doesn't like you messing with Pascal variables in
Assembler, you have to improvise.

If you are working in stand alone Assembler, then you can code this much more
efficiently, like the first example.  I left the code as it was so those who
are working with a high-level language can get around a particularly annoying
problem.

Now you have seen how useful IN and OUT can be.  Directly controlling hardware
is both fast and efficient.  In the next few weeks, I may include a list of
some of the most common ports, but if you have a copy of Ralf Brown's
Interrupt List, (available at X2FTP), you will already have a copy.

Note:  You can find a link to Ralf's Interrupt List on my homepage.

 ────────────────────────────────────────────────────────────────────────────

 A bit more on the FLAGS register:

Now, although we have been using the flags register in almost all our code
up until this point, I haven't really gone into depth about it.  You can work
blissfully unaware of the flags, and compare things without knowing what's
really happening, but if you want to get further into Assembler, you'll
need to know some more.

Back in Tutorial Three, I gave an extremely simplistic view of the FLAGS
register.  In reality, the FLAGS, or EFLAGS register is actually a 32-bit
register, although only bits 0-18 are used.  We really don't need to know any
of the flags above bit 11 for now, but it's good to know they are there.

The EFLAGS register actually looks like this:

18  17  16  15  14  13  12  11  10  09  08  07  06  05  04  03  02  01  00
AC  VM  RF  --  NT  IO/PL   OF  DF  IF  TF  SF  ZF  --  AF  --  PF  --  CF

Now, the flags are as follows:

   ■ AC   - Alignment Check (80486)
   ■ VM   - Virtual 8086 Mode
   ■ RF   - Resume Flag
   ■ NT   - Nested Task Flag



   ■ IOPL - I/O Privilege Level - has a value of 0,1,2 or 3 thus 2 bits big

   ■ OF   - Overflow Flag
            This bit is set to ONE if an arithmetic instruction generated a
            result that was too large or too small to fit in the destination
            register.

   ■ DF   - Direction Flag
            When set to ZERO, string instructions, such as MOVS, LODS and
            STOS will increment the memory address they are working on by one.
            This means that say, DI, will be incremented when you use STOSB
            to put a pixel at ES:DI.  Setting the bit to ZERO will decrement
            the memory address after each call.

   ■ IF   - Interrupt Enable Flag
            When this bit is set, the processor will respond to external
            hardware interrupts.  When the bit is reset, hardware interrupts
            are ignored.

   ■ TF   - Trap Flag
            When this bit is set, an interrupt will occur immediately after the
            next instruction executes.  This is generally used in debugging.

   ■ SF   - Sign Flag
            This bit is changed after arithmetic instructions.  The bit
            receives the high-order bit of the result, and if set to ONE,
            it indicates that the result of the operation was negative.

   ■ ZF   - Zero Flag
            This bit is set when arithmetic instructions generate a result of
            zero.

   ■ AF   - Auxiliary Carry Flag
            This bit indicates that a carry out of the low-order nibble of AL
            occurred in an arithmetic instruction.

   ■ PF   - Parity Flag
            This bit is set to one when an arithmetic instruction results in
            an even number of 1 bits.

   ■ CF   - Carry Flag
            This bit is set when the result of an arithmetic operation is
            too large or too small for the destination register or memory
            address.

Now, of all those above, you really won't have to worry too much about most
of them.  For now, just knowing CF, PF, ZF, SF, IF, DF and OF will be
sufficient.  I didn't give the first few comments as they are fairly
technical, and are used mostly in protected mode and complex situations.  You
shouldn't have to know them.

You can, if you wish, move a copy of the flags into AH with LAHF - (Load AH
with Flags) - and modify or read individual bits, or change the status of
bits more easily with CLx and STx.  However you plan to change the flags,
remember that they can be extremely useful in many situations.

(They can also be very annoying when late at night, lines start drawing
backwards, and you spend an hour wondering why - then remember that you
forgot to clear the direction flag!)



 ────────────────────────────────────────────────────────────────────────────

I think we've covered quite a few important topics in this tutorial.  Brush
up on the flags, and go over the largish line routine, as it is an excellent
example of flow control.  Make sure your skills at controlling instruction
flow are perfected.

Next week I'll try to tie all the topics we've covered over the last few
weeks together, and present some form of review of all that you've learnt.
Next week I'll also go into optimization, and how you can speed up all the
code we've worked with so far.

 ────────────────────────────────────────────────────────────────────────────

Next week's tutorial will include:

   ■ A review of all you've learnt
   ■ Optimization
   ■ Declaring procedures in Assembler
   ■ Linking your code to C/C++ or Pascal

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.
          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART VII                        ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.3
Date     :  01-05-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Hi again, and welcome to the seventh instalment of the Assembler Tutorials.



These tutorials seem to be coming out at an irregular rate, but people are
screaming at me for things I haven't done, and I'm still working on projects
of my own.  I hope to spit these tutes out fortnightly.

Now this week we'll be covering two pretty important topics.  When I first
began playing around with Assembler I soon realised that Turbo Pascal, (the
language I was working with then), had a few limitations - one of them being
that it was, and still is, a 16-bit language.  This meant that if I wanted to
play around with super-fast 32-bit screen writes, I couldn't.  Not even with
the built in Assembler, (well, not easily anyway).

What I needed to do was to write code separately in 100% Assembler, then link
it to Turbo.  This isn't a particularly hard task, and is one of the things
I'm going to try and teach you today.

The other advantage of writing routines in stand alone Assembler is that you
can also link the resulting object code to another high-level language, like
C.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │    WRITING EXTERNAL CODE FOR YOUR HIGH LEVEL LANGUAGE    │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

Before we begin, you'll need an idea of what far and near calls are.  If you
already know, then skip ahead past this little section.

As we discussed before, the PC has a segmented architecture.  As you know,
you can only access one 64K segment at a time.  Now if you are working on code
less than 64K in size, or in a language that takes care of all your worries
for you, you don't need to worry so much.  However, when working in Assembler,
we do.

Imagine we have the following program loaded into memory:

       ·
       ∙              ┌─────────────────────────┐
       │              │                         │
  64K  │       ┌──────┤       ROUTINE TWO       ├───┐
       │       │      │                         │   │
       #       #      └─────────────────────────┘   │
               │                                    #
       #       │ ┌─────────────────────────┐        │
       │       │ │                         │        │
       │       └─┤       ROUTINE ONE       ├──────┐ │
       │         │                         │      │ │
       │         └─────────────────────────┘      │ │
       │                                          # #
  64K  │              ┌─────────────────────────┐ │ │
       │              │                         ├─┘ │
       │   Entry  ──#─┤      MAIN PROGRAM       │   │
       │              │                       ┌─┼───┘
       │              └───────────────────────┼─┘
       │                                      #
       #                                    Exit



When a JMP is executed to transfer control to Routine One, this will be a
near call.  We do not leave the segment that the main body of the program
is located in, and so when the JMP or CALL is executed, and CS:IP is changed
by JMP, only IP need be changed, not CS.

The offset changes, but not the segment.

Now jumping to Routine Two would be different.  This leaves the current
segment, and so both parts of the CS:IP pair will need to be altered.  This
is a far call.

The problem occurs when the CPU encounters a RET or RETF at the end of the
call.  Let's say by accident you put RET at the end of Routine Two instead of
RETF.  When the CPU saw RET it would only POP IP off the stack, and so your
machine would probably crash, as CS:IP would now be pointing to garbage.

This point is especially important when linking to a high-level language.
Whenever you write code in Assembler and link it to say, Pascal, remember to
use the {$F+} compiler directive, even if it wasn't a far call.  This way,
after Turbo has called the routine, it'll pop both CS and IP, and everything
will be fine.

Failure to do so is at your own risk!

 ────────────────────────────────────────────────────────────────────────────

Okay, let's return to the stand alone model we saw in Tutorial Three.  I don't
remember rightly, but I think it went something like this:

    DOSSEG
    .MODEL SMALL
    .STACK 200h
    .DATA
    .CODE

START:

END START

Now, I think it's time you graduated from using that skeleton.  Let's look
at other ways we can set up a skeleton routine:

    DATA     SEGMENT WORD PUBLIC

    DATA     ENDS

    CODE     SEGMENT WORD PUBLIC
     ASSUME  CS:CODE, DS:DATA

    CODE     ENDS

    END



This is an obviously different skeleton.  Note how I omitted the period in
front of DATA and CODE.  Depending on which assembler/linker you use, you may
need to use a period or you may not.  TASM, the assembler I use, supports both
of these formats, so pick one that both you and your assembler are happy with.

Note also the use of DATA  SEGMENT WORD PUBLIC.  Firstly, WORD tells the
assembler to align the segment on word boundaries.

FUN FACT: You needn't worry about this for now, but Turbo Pascal does this
          anyway, so putting BYTE instead of word would make no difference. :)

PUBLIC allows the compiler you use, to access any variables you may wish to
place in the data segment.  If you do not want your high-level language to
have access to any variables you may declare, then omit this.  If you will
not be needing access to the data segment anyway, then don't bother with the
whole DATA SEGMENT thing.

Now, onto the code segment.  Generally, you will need to include this in all
the code you write.  :)  The assume statement will also be pretty standard in
all you'll work with.  You can also expect to see CSEG and DSEG instead of
CODE and DATA.  Note that again this is declared public.  This is where all
our routines will go.

 ────────────────────────────────────────────────────────────────────────────

                 So, how do I declare external procedures?

Okay, for this example, we're going to use a few simple routines similar to
those in the MODE13H Pascal library.  (Available from my homepage).

If you remember, the procedures looked a bit like this:

   ■ Procedure PutPixel(X, Y : Integer; Color : Byte);

   ■ Procedure InitMCGA;

   ■ Procedure Init80x25;

Fitting these in our skeleton gives us this:

    CODE     SEGMENT WORD PUBLIC
     ASSUME  CS:CODE, DS:DATA

     PUBLIC  PutPixel
     PUBLIC  InitMCGA
     PUBLIC  Init80x25

    CODE     ENDS

    END

Now, all we have to do is to code 'em.  But hang on a minute - the PutPixel



routine had PARAMETERS.  How do we use these in external code???

This is the tricky bit.  What we do is push these values onto the stack,
simply saying -- PutPixel(10, 20, 15); -- will do this for us.  It's getting
them off that's harder.  What I generally do, and I suggest you do, is make
sure that you DECLARE ALL EXTERNAL PROCEDURES FAR.  This makes working with
the stack so much easier.

FUN FACT: Remember that what's first on the stack is LAST OFF.  :)

When you call PutPixel, the stack will be changed.  As this is a far call,
the first four bytes will hold CS:IP.  The bytes from then on will hold your
parameters.

To cut a long story short, let's say the stack used to look like this:

   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...

After calling -- PutPixel(10, 20, 15); -- some time later, it may look like
this:

   4C EF 43 12 0F 00 14 00 0A 00   9E F4 3A 23 1E 21 ...

   ^^^^^^^^^^^ ^^^^^ ^^^^^ ^^^^^   ^^^^^^^^^^^^^^^^^
      CS:IP    Color   Y     X      Some other crap

Now, to complicate things, the CPU stores words on the stack with THE LEAST
SIGNIFICANT PART FIRST.  This doesn't bother us too much, but if you muck
around with a debugger without realising this, you're gonna get really
confused.

Note also, that when Turbo Pascal puts one byte data types on the stack, they
will chew up TWO BYTES, NOT ONE.  Don't you just _love_ the way the PC is
organised?  ;)

Now, all that I've said up until this point only applies to value parameters -
PARAMETERS YOU CANNOT CHANGE.  When you muck around with REFERENCE PARAMETERS,
like -- MyProc(Var A, B, C : Word); -- each parameter now uses FOUR BYTES of
stack space, two for the segment and two for the offset of where the variable
is located in memory.

So if you pushed a variable that was held in, say, memory address 4AD8:000Eh,
no matter what the value of this was, 4AD8:000Eh would be stored on the stack.

As it happens, that would look like 0E 00 D8 4A on the stack, remembering that
the least significant nibble is stored first.

FUN FACT:  Value Parameters actually put the value on the stack, Reference
           Parameters store the address.  :)

 ────────────────────────────────────────────────────────────────────────────

Okay, now I've got you well and truly confused, it gets a little worse!



To reference these parameters in your code, you have to use the stack pointer,
SP.  Trouble is, you aren't allowed to play with SP directly, you have to
push BP, and move SP into it.  This now adds another two bytes to the stack.
Lets say BP was equal to 0A45h.  Before pushing BP, the stack would look like
this:

   4C EF 43 12 0F 00 14 00 0A 00

   ^^^^^^^^^^^ ^^^^^ ^^^^^ ^^^^^
      CS:IP    Color   Y     X

After pushing BP, you get:

 45 0A 4C EF 43 12 0F 00 14 00 0A 00

  ^^^^ ^^^^^^^^^^^ ^^^^^ ^^^^^ ^^^^^
   BP     CS:IP    Color   Y     X

Now we've finally got over all that, we can actually access the damn things!
What you'd do after calling -- PutPixel(10, 20, 15); -- to access the Color
value - 15 - is this:

   PUSH  BP
   MOV   BP, SP

   MOV   AX, [BP+6]   ; Now we have Color

We can access X and  Y like this:

   MOV   BX, [BP+8]   ; Now we have Y

   MOV   CX, [BP+10]  ; Now we have X

And now we restore BP:

   POP   BP

Now we return from a FAR call, and remove the six bytes of data we put on the
stack:

   RETF  6

And that's it!

 ────────────────────────────────────────────────────────────────────────────

Now, let's put the PutPixel, InitMCGA and Init80x25 into some Assembler
code.  You end up with something like this:

 ────────────────────────────────────────────────────────────────────────────



CODE SEGMENT WORD PUBLIC
     ASSUME  CS:CODE, DS:DATA

     PUBLIC PutPixel        ; Declare the public procedures
     PUBLIC InitMCGA
     PUBLIC Init80x25

.386                        ; Let's use some 386 registers

; ───────────────────────────────────────────────────────────────────────────

;
; Procedure PutPixel(X, Y : Integer; Color : Byte);
;

PutPixel PROC FAR           ; Declare a FAR procedure

   PUSH  BP
   MOV   BP, SP             ; Set up the stack

   MOV   BX, [BP+10]        ; BX = X
   MOV   DX, [BP+08]        ; DX = Y
   XCHG  DH, DL             ; As Y will always have a value of less than 200,
   MOV   AL, [BP+06]        ; this is 320x200 don't forget, saying XCHG DH,DL
   MOV   DI, DX             ; is an ingenious way of saying SHL DX, 8
   SHR   DI, 2
   ADD   DI, DX
   ADD   DI, BX             ; Now we have the offset, so...
   MOV   FS:[DI], AL        ; ...plot it at FS:DI

   POP   BP
   RETF  6

PutPixel ENDP

; ───────────────────────────────────────────────────────────────────────────

;
; Procedure InitMCGA;
;

InitMCGA PROC FAR

   MOV   AX, 0A000H         ; Point AX to the VGA
   MOV   FS, AX             ; Why not FS?
   MOV   AH, 00H
   MOV   AL, 13H
   INT   10H
   RETF

InitMCGA ENDP

; ───────────────────────────────────────────────────────────────────────────

;
; Procedure Init80x25;
;

Init80x25 PROC FAR



   MOV   AH, 00H
   MOV   AL, 03H
   INT   10H
   RETF

Init80x25 ENDP

CODE    ENDS
        END

 ────────────────────────────────────────────────────────────────────────────

And that's it.  I'm sorry if I made the whole thing a bit of a confusing
exercise, but that's the fun of computers! :)

Oh, by the way, you can use the above code in Pascal by assembling it with
TASM, or MASM.  <shudder>  Next, include it in your code as follows:

{$L WHATEVERYOUCALLEDIT.OBJ}
{$F+}
Procedure PutPixel(X, Y : Integer; Color : Byte);   External;
Procedure InitMCGA;                                 External;
Procedure Init80x25;                                External;
{$F-}

Begin
   InitMCGA;
   PutPixel(100, 100, 100);
   ReadLn;
   Init80x25;
End.

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │           FUNCTIONS AND FURTHER OPTIMIZATION             │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

You can get your Assembler routines to return values which you can use in
your high-level language if you wish.  The table below contains all the
necessary information you'll need to know:

                  ╔══════════════════╤══════════════════════╗
                  ║  Type to Return  │  Register(s) to Use  ║
                  ╟──────────────────┼──────────────────────╢
                  ║  Byte            │  AL                  ║
                  ║  Word            │  AX                  ║
                  ║  LongInt         │  DX:AX               ║
                  ║  Pointer         │  DX:AX               ║
                  ║  Real            │  DX:BX:AX            ║
                  ╚══════════════════╧══════════════════════╝

Now that you've seen how to write external code, you'll probably want to



know how you can tweak it to get the full performance that external code can
deliver.

Some points for you to work with are as follows:

   ■ You can't use SP directly, but you CAN use ESP.  And no, I don't mean use
     your mental powers to get the parameter you want.  :)

   ■ That'll do away with the slow pushing/popping of BP.

   ■ Remember that you'll need to change [xx+6] to [xx+4] for the last,
     (first), parameter - as BP is now no longer on the stack.

Have a fiddle, and see what you can do with it.  It is possible through
tweaking to make the code faster than the inline routine featured in
MODE13H.ZIP version 1 - (available from my homepage).

Note:  I plan to further develop the MODE13H library, adding fonts and other
       cool features.  It will be eventually coded in standalone Assembler,
       AND be callable from C and Pascal.

       Standalone code also has a hefty speed increase.  Today I tested the
       PutPixel routine in the MODE13H library and a standalone PutPixel,
       (practically identical), and saw an amazing speed difference.

       On a 486SX 25 with 4MB of RAM and a 16-bit VGA card, it took only 5
       hundredths of a second for the standalone routine to plot 65,536 pixels
       in the middle of the screen, as opposed to 31 hundredths of a second
       for the other routine.  Big difference, huh?

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │                       OPTIMIZATION                       │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

As speedy as Assembler may be, you can always speed things up further.  I'm
going to give some coverage on how you can speed your code up on the 80486,
and the 80386, to some extent.

I'm not going to worry too much about the Pentium for now, as the tricks to
use on the Pentium certainly ARE tricky, and would take quite a while to
explain.  Also, you should avoid Pentium specific code, (though this is
slowly changing).

 ────────────────────────────────────────────────────────────────────────────

  The AGI (Address Generation Interlock):

What the hell is that?, you ask.  An AGI occurs when a register that is
currently being used as a base or index was the destination of a previous
instruction.  AGI's are bad, and chew up clock ticks.



EG:   MOV   ECX, 3
      MOV   FS, ECX

This can be avoided by performing another instruction between the two MOVes,
as an AGI can only occur on adjacent instructions.  (On the 486 anyway.)  On
the Pentium, an AGI can occur anywhere between THREE instructions.

 ────────────────────────────────────────────────────────────────────────────

  Use 32-bit Instructions/Registers:

Using 32-bit registers tends to be faster than using their 16-bit
counterparts.  (Particularly EAX, as many instructions actually become one
byte shorter when this register is used.  Using DS instead of ES is also
faster for a similar reason.)

 ────────────────────────────────────────────────────────────────────────────

  Other things to try:

   ■ Avoid LOOPing.  Try using just a DEC, or INC following by a JZ or similar
     instruction.  This can make a big difference.

   ■ When zeroing out registers, use XOR rather than MOV xx, 0.  Believe it or
     not, this is actually faster.

   ■ Make use of TEST when you are checking to see if a register is equal to
     zero.  By ANDing the operands together, no time is wasted in farting
     around with a destination register.  TEST EAX, EAX is a good way of
     checking to see if EAX = 0.

   ■ USE SHIFTS!  Don't use multiplication to work out even the simplest of
     sums.  The CPU can move a few ones and zeros left or right much faster
     than it can do the multiplication/division.

   ■ Make cunning use of LEA.  One instruction is all it takes to perform an
     integer multiply and store the result in a register.  This is a useful
     alternative to SHL/SHR.  (I know, I know... I said multiplication was
     bad.  But an LEA can sometimes be useful as it can save several
     instructions.)

     EG: LEA ECX, [EDX+EDX*4]   ; ECX = EDX x 5

   ■ Avoid MOVing into segment registers often.  If you are going to be
     working with a value that doesn't change, such as A000h, then load it
     into, say, FS and use FS from then on.

   ■ Believe it or not, string instructions, (LODSx, MOVSx, STOSx) are much
     faster on a 386 than they are in a 486.  If working with 486+, then
     use other, more simple instructions instead.

   ■ When moving 32-bit chunks, REP STOSD is a lot faster than using a loop
     to accomplish the same thing.



 ────────────────────────────────────────────────────────────────────────────

Well, now you've seen how you can write external code, declare procedures in
Assembler and optimize your routines.  Next week I'm _finally_ going to draw
all that you've learnt together, and see if we can make some sense out of it
all.  I'm also going to include a stand alone Assembler example - a better
starfield with palette control, to demonstrate INs and OUTs, program control,
procedures and TESTing.

 ────────────────────────────────────────────────────────────────────────────

Next week's tutorial will include:

   ■ A review of all you've learnt - finally(sorry!);
   ■ Declaring sub-procedures in Assembler;
   ■ A nifty example;  :)
   ■ Some other great topic.

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.

 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.

 ────────────────────────────────────────────────────────────────────────────

Just a little joke I found on a local BBS, which I thought quite amusing.
I guess those with a UNIX background will understand it more...

 ────────────────────────────────────────────────────────────────────────────

Micro was a real-time operator and dedicated multi-user.  His
broad-band protocol made it easy for him to interface with numerous
input/output devices, even if it meant time-sharing.

One evening he arrived home just as the Sun was crashing, and had
parked his Motorola 68040 in the main drive (he had missed the
5100 bus that morning), when he noticed an elegant piece of liveware
admiring the daisy wheels in his garden.  He thought to himself,
"She looks user-friendly. I'll see if she'd like an update tonight."

Mini was her name, and she was delightfully engineered with eyes
like COBOL and a PR1ME mainframe architecture that set Micro's
peripherals networking all over the place.

He browsed over to her casually, admiring the power of her twin,
32-bit floating point processors and enquired "How are you, Honeywell?".



"Yes, I am well", she responded, batting her optical fibers engagingly
and smoothing her console over her curvilinear functions.

Micro settled for a straight line approximation.  "I'm stand-alone
tonight", he said, "How about computing a vector to my base address?
I'll output a byte to eat, and maybe we could get offset later on."

Mini ran a priority process for 2.6 milliseconds, then transmitted 8 K.
"I've been dumped myself recently, and a new page is just what I need
to refresh my disks.  I'll park my machine cycle in your background and
meet you inside."   She walked off, leaving Micro admiring her solenoids
and thinking, "Wow, what a global variable, I wonder if she'd like my
firmware?"

They sat down at the process table to top of form feed of fiche and
chips and a bucket of baudot.  Mini was in conversation mode and expanded
on ambiguous arguments while Micro gave the occassional acknowledgements,
although, in reality, he was analyzing the shortest and least critical
path to her entry point.  He finally settled on the old 'Would you like
to see my benchmark routine', but Mini was again one step ahead.

Suddenly she was up and stripping off her parity bits to reveal the
full functionality of her operating system software.  "Let's get BASIC,
you RAM", she said.  Micro was loaded by this; his hardware was in
danger of overflowing its output buffer, a hang-up that Micro had
consulted his analyst about. "Core", was all he could say, as she
prepared to log him off.

Micro soon recovered, however, when Mini went down on the DEC and
opened her divide files to reveal her data set ready.
He accessed his fully packed root device and was just about to start
pushing into her CPU stack, when she attempted an escape sequence.

"No, no!", she cried, "You're not shielded!"
          ╔════════════════════════════════════════════════════════╗
          ║             Adam's Assembler Tutorial 1.0              ╟─┐
          ║                                                        ║ │
          ║                        PART VIII                       ║ │
          ╚═╤══════════════════════════════════════════════════════╝ │
            └────────────────────────────────────────────────────────┘

Revision :  1.4
Date     :  28-06-1996
Contact  :  blackcat@faroc.com.au
            http://www.faroc.com.au/~blackcat

Note     :  Adam's Assembler Tutorial is COPYRIGHT, and all rights are
            reserved by the author.  You may freely redistribute only the
            ORIGINAL archive, and the tutorials should not be edited in any
            form.

 ────────────────────────────────────────────────────────────────────────────

Well, welcome back assembler coders.  This tutorial is _really_ late, and
would have been a lot later were it not for Björn Svensson, and many others
like him, who thanks to their determination to get Tutorial 8, persuaded me
to get this thing written.  Of, course, this means I've probably failed all
my exams over the past two weeks, but such is life.  :)



Okay, this week we're really going to learn something.  We're going to take a
much closer look at how we can declare variables, and delve into the world of
structures.  You'll learn how to create arrays in Assembler, and this concept
is reinforced with the demo program I included - a fire routine!

 ────────────────────────────────────────────────────────────────────────────

         ┌──────────────────────────────────────────────────────────┐
         │                                                          │
         │               DATA STRUCTURES IN ASSEMBLER               │
         │                                                          │
         └──────────────────────────────────────────────────────────┘

Okay, by now you should know that you can use the DB, (Declare Byte) and DW,
(Declare Word) to create variables.  However, up until now we have been using
them as you would use the Const declaration in Pascal.  That is, we have been
using it to assign a byte or word with a value.

EG:

   MyByte DB 10  --  which is the same as  --  Const MyByte : Byte = 10;

However, we could just have easily said:

   MyByte DB ?

...and then later on said:

   MOV   MyByte, 10

In fact DB is very powerful indeed.  Several tutorials ago when you were
learning to put strings on the screen, you saw something along the lines of
this:

   MyString DB 10, 13 "This is a string$"

Now the more inquisitive of you would have probably said to yourselves, "Hang
on... that tutorial guy said that DB declares a BYTE.  How can DB declare a
string then?"  Well, DB has the ability to reserve space for multiple byte
values - from 1 to as many bytes as you need.

You may also have wondered what the 10 and 13 before the text stood for.
Well, dig out your ASCII chart and have a look at character 10 and character
13.  You'll notice that 10 is Line Feed and 13 is Carriage Return.  Basically,
it's just like saying:

   MyString := #10 + #13 + 'This is a string';

in Pascal.

 ────────────────────────────────────────────────────────────────────────────

Okay, so you've seen how to create variables properly.  But what about



constants?  Well, in Assembler, constants are known as Equates.  Equates make
Assembler coding much more easy, and can simplify things greatly.  For
instance, if I were to have used the following in previous tutorials:

   LF   EQU 10
   CR   EQU 13

   DB   LF, CR "This is a string$"

...people would have got the 10, 13 thing straight away.  However, just to
make things a little more complicated, there is yet another way that you can
assign values to identifiers.  You can do things just like you would in BASIC:

   Population  = 4Ch
   Magnitude   = 0

Basically, you can bear the following points in mind:

   ■  Once you use EQU to assign a value to an identifier, you can not change
      it.

   ■  EQU can be used to define just about any type - including strings.  You
      cannot, however, do this when you use a '='.  An '=' can only define
      numeric values.

   ■  You can use EQU almost anywhere in your program.

   ■  Values defined with '=' can be changed.

 ────────────────────────────────────────────────────────────────────────────

And now on with one of the trickier aspects of Assembler coding - structures.
Structures are not variables themselves, they are a TYPE - basically a
schematic for a variable.

As an example, if you had the following in Pascal:

   Type
      Date      = Record;
         Day    : Byte;
         Month  : Byte;
         Year   : Word;
      End;    { Record }

You could represent this in Assembler as follows:

   Date         STRUC
      Day       DB ?
      Month     DB ?
      Year      DW ?
   Date         ENDS

However, one of the advantages of Assembler is that you can initialize all or
some of the fields of the structure before you even refer to the structure in
your code segment.



That structure above could easily be written as:

   Date         STRUC
      Day       DB ?
      Month     DB 6
      Year      DW 1996
   Date         ENDS

Some important points to remember are as follows:

   ■ You can declare a structure anywhere in your code, although for good
     program design, you should really put them in the data segment, unless
     they will only be used by a subroutine.

   ■ Defining a structure does not reserve any bytes of memory.  It is only
     when you declare a structured variable that memory is allocated.

 ────────────────────────────────────────────────────────────────────────────

          ┌──────────────────────────────────────────────────────────┐
          │                                                          │
          │         REFERENCING DATA STRUCTURES IN ASSEMBLER         │
          │                                                          │
          └──────────────────────────────────────────────────────────┘

Well, you've seen how to define structures, but how do you actually refer to
them in your code?

All you have to do, is place a few lines like the ones below somewhere in your
program - preferably in the data segment.

   Date         STRUC
      Day       DB 19
      Month     DB 6
      Year      DW 1996
   Date         ENDS

   Date_I_Passed_Physics   Date <>   ; I hope!

At this point in time, Date_I_Passed_Physics has all three of its fields
assigned.  Day is set to 19, Month to 6 and Year to 1996.  Now, what are
those brackets, "<>", doing after date you ask?

The brackets present us with yet another chance to alter the contents of the
variable's fields.  If I had written this:

   Date_I_Passed_Physics   Date <10,10,1900>

...then the fields would have been changed to the values in the brackets.
Alternatively, it would have been possible to do this:

   Date_I_Passed_Physics   Date <,10,>   ;

And now only the Month field has been changed.  Note that in this example,
the second comma was not needed as we did not go on to change further fields.



It is your choice, (and the compiler's!), whether to leave the second comma
in.

Now all this is very well, but how do you use these values in your code? It
is simply a matter of saying:

   MOV   AX, [Date_I_Passed_Physics.Month]    ; or something like

   MOV   [Date_I_Passed_Physics.Day], 5       ; or maybe even

   CMP   [Date_I_Passed_Physics.Year], 1996

Simple, huh?

 ────────────────────────────────────────────────────────────────────────────

          ┌──────────────────────────────────────────────────────────┐
          │                                                          │
          │              CREATING ARRAYS IN ASSEMBLER                │
          │                                                          │
          └──────────────────────────────────────────────────────────┘

Okay, arrays are pretty easy to implement.  As an example, let's say you had
the following array structure in Pascal:

   Var
      MyArray : Array[0..19] Of Word;

To create a similar array in Assembler, you must use the DUP operator.  DUP,
or DUPlicate Variable, has the following syntax:

   ■ <label>    <directive> <count>  DUP  (expression)

   Where (expression) is an optional value to initialize the array to.

Basically, that Pascal array would look like this:

   MyArray    DW 20 DUP (?)

Or, if you wanted to initialize each value to zero, then you could say this:

   MyArray    DW 20 DUP (0)

And, as another example of just how flexible Assembler is, you could say
something along the lines of:

   MyArray    DB  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

..to create a 10 byte array with all ten elements initialized to 1, 2, 3...

 ────────────────────────────────────────────────────────────────────────────



          ┌──────────────────────────────────────────────────────────┐
          │                                                          │
          │              INDEXING ARRAYS IN ASSEMBLER                │
          │                                                          │
          └──────────────────────────────────────────────────────────┘

Well, now you've seen how to create arrays, I guess you are going to want to
know how to reference individual elements.  Well, let's say you had the
following array:

   AnotherArray   DB  50 DUP (?)

If you wanted to move element 24 into, say, BL, then you could do this:

   MOV   BL, [AnotherArray + 23]   ; Or, it would be possible to say:

   MOV   AX, 23
   MOV   BL, [AnotherArray + AX]

NOTE:  Do not forget that all arrays start at element ZERO.  High-level
languages like C and Pascal make you forget this due to the way they let
you reference arrays.

 ────────────────────────────────────────────────────────────────────────────

Now that was easy, but what if AnotherArray was 50 WORDS, not BYTES?

   AnotherArray   DW  50 DUP (?)   ; like this.

Well, to access element 24, you would have multiply the index value by two,
and then add that to AnotherArray to get the desired element.

   MOV   AX, 23                    ; Access element 24
   SHL   AX, 1                     ; Multiply AX by two
   MOV   BX, [AnotherArray + AX]   ; Get element 24 in BX

Not all that hard, no?  However, this method gets a little tricky when you
don't have nice neat little calculations to do when the index is not a power
of two.

Let's say that you had an array that had an element size of 5 bytes.
If we wanted to check the seventh element, we'd have to do something like
this:

   MOV   AX, 6                        ; Get the seventh element
   MOV   BX, 5                        ; Each element is five bytes big
   MUL   BX                           ; AX = 6 x 5
   MOV   DX, [YetAnotherArray + AX]   ; Get element 7 in DX

However, as I have stressed before, MUL is not a very efficient way of coding,
so replacing the MUL with a SHL 2 and an ADD would be the order of the day.

 ────────────────────────────────────────────────────────────────────────────



Just before we press on with something else, I guess I'd better take the time
to mention floating point numbers.  Now, floating point numbers can get
awkward to manipulate in Assembler, so don't go and write that spreadsheet
program you've always wanted in machine code!  However, when working with
texture mapping, circles and other more complicated functions, it is
inevitable that you'll need something to declare floating point numbers.

Let's say we wanted to store Pi.  To declare Pi, we need to use the DT
directive.  You could declare Pi like this:

Pi   DT 3.14

DT actually reserves ten bytes of memory, so it would be possible to declare
Pi to a greater number of decimal places.

I'm not going to go into the specifics of floating point numbers in this
tutorial.  When we need them later on, I'll cover them.

 ────────────────────────────────────────────────────────────────────────────

Okay, in the last tutorial I said I'd give some sort of summary of what we've
covered over the last four months.  (Hey - that's roughly a tutorial every
two weeks, so maybe they haven't been so wildly erratic after all!)

Anyway, as it happens I'm going to go over getting and setting individual
bits in a register, because this is an important topic that I should have
covered a long time ago.

 ────────────────────────────────────────────────────────────────────────────

          ┌──────────────────────────────────────────────────────────┐
          │                                                          │
          │                    LOGICAL OPERATORS                     │
          │                                                          │
          └──────────────────────────────────────────────────────────┘

Okay, way back in Tutorial Five, I gave the three truth tables for AND, OR
and XOR.

(By the way, in one edition of Tutorial Five, I messed up the table for XOR,
kindly pointed out by Keith Weatherby, so if you don't have the most
up-to-date version, (currently V 1.3), then get it now.  Please, although I
try my best to weed out any mistakes from the Tutorials, some do get through,
so if you spot any, please let me know.

Make sure you have the most recent editions of the tutorials before you do
this though!)

Okay, enough of my mistakes.  Those tables looked like these:

                      AND             OR             XOR

                  0 AND 0 = 0     0 OR 0 = 0     0 XOR 0 = 0



                  0 AND 1 = 0     0 OR 1 = 1     0 XOR 1 = 1
                  1 AND 0 = 0     1 OR 0 = 1     1 XOR 0 = 1
                  1 AND 1 = 1     1 OR 1 = 1     1 XOR 1 = 0

This is all very well, but what use can these be to us?  Well, first of all,
lets have a look at what AND can do.  We can use AND to mask bits in a
register or variable, and thus set and reset individual bits.

As an example, we will use AND to test a value of a single bit.  Look at the
following examples, and see how you can use AND for your own ends.  A good
use for AND would be to check if a character read from the keyboard is either
a capital letter or not.  (You can do this, because the only difference
between a capital letter and a lowercase letter is one bit.

   EG:  'A' =  65   = 01000001
        'a' =  97   = 01100001

        'S' =  83   = 01010011
        's' =  115  = 01110011)

So, in the same way that you can AND the following binary numbers together,
you could use a similar approach to write a routine that checks whether a
character is upper or lower case.

   EG:         0101 0011                             0111 0011
           AND 0010 0000                         AND 0010 0000

             = 0000 0000                           = 0010 0000

      ^^^ This is upper case ^^^            ^^^ This is lower case ^^^

Now, what about OR?  OR is most often used after an AND, but does not have
to be.  You can use OR to change individual bits in a register or variable
without changing any of the other bits.  You could use OR to write a routine
to make a character uppercase if it is not already, or perhaps lower case if
it was previously upper.

   EG:                             0101 0011
                                OR 0010 0000

                                =  0111 0011

            ^^^ Capital S has now been changed to lower case s ^^^

The AND/OR combination is one of the most often used tricks of the trade of
Assembler, so make sure you have a good grip on the concept.  You will often
see me using them, taking advantage of the speed of the instructions.

Finally, what about XOR?  Well, eXclusive OR can be very useful at times. XOR
can be useful in toggling individual bits on and off without having to know
what the contents of each bit was beforehand.  Remember, as with OR, a zero
mask allows the original bit to pass through.

   EG:                            1010 0010



                              XOR 1110 1011

                                = 0100 1001

Make some attempt to learn these binary operators, and what they do.  They
are an invaluable tool when working with binary numbers.

NOTE:   For simplicity, Turbo Assembler allows you to use binary numbers in
        your code.  EG, it would be possible to say, AND AX, 0001000b instead
        of AND AX, 8h to test bit 3 of AX.  This can possibly make things
        easier for you when coding.

 ────────────────────────────────────────────────────────────────────────────

          ┌──────────────────────────────────────────────────────────┐
          │                                                          │
          │                    THE DEMO PROGRAM                      │
          │                                                          │
          └──────────────────────────────────────────────────────────┘

Okay, enough of the boring stuff - on to the demo program I included!  I
thought it was time to write another demo - a proper 100% Assembler one this
time, and had a go at a fire routine.  Fire routines can look pretty
effective, and are surprisingly easy to make, so why not I thought...

 ────────────────────────────────────────────────────────────────────────────

Now, the principles of a fire routine are quite simple.  You basically do the
following:

   ■ Create a buffer to work with

     This buffer may be almost any size, though the smaller you make it, the
     faster your program will be, and the larger you make it, the more well
     defined the fire will be.  You need to strike a balance between clarity
     and speed.

     My routine is a little slow, and this is partly due to the clarity of
     the fire.  I chose 320 x 104 as my buffer size, so I made a compromise.
     The horizontal resolution is good - 1 pixel per array element, but the
     vertical resolution is a little low - 2 pixels per array element.

     However, I've seen routines where an 80 x 50 buffer is used, meaning
     there is both 4 pixels per element for the horizontal and vertical
     axis.  It's fast, but grainy.

   ■ Make a nice palette

     It would be good idea to have color 0 as black, (0, 0, 0) and color 255
     as white - (63, 63, 63).  Everything in between should be a
     reddish-yellow flamey mix.  I guess you could have green flames if you
     wanted, but we'll stick to the flames we know for now.  :)

Now the main loop begins.  In the loop you must:



   ■ Create a random bottom line, or two bottom lines

     Basically, you have a loop like:

     For X := 1 To Xmax Do
      Begin
         Temp := Random(256);
         Buffer[X, Ymax - 1] := Temp;
         Buffer[X, Ymax]     := Temp;
      End;

      Code that in the language of your choice, and you're in business.

   ■ Soften the array

     Now this is the only tricky bit.  What you have to do, is as follows:

       * Start from the second row down of the buffer.
       * Move down, and for each pixel:

         * Add up the values of four pixels that surround the pixel.
         * Divide the total by four to get an average.
         * Take one from the average.
         * Put the average - 1 back into the array DIRECTLY ABOVE where the
           old pixel used to be.  (You can alter this, and say, put it above
           and to the right, and then it will look like the flame is being
           blown by the wind.)

       * Do this till you get to the last row.

   ■ Copy the array to the screen

     If your array is 320 x 200, then you can copy element-for-pixel.  If it
     isn't, then things are harder.  What I had to do was copy an array row
     to the screen, move down a screen row, copy the same array row to the
     screen, and then go onto a different row in the array and screen.

     This way, I spread the fire out a bit.

     You will of course, wonder exactly why my array is 320 x 104 and not
     320 x 100.  Well, the reason for this is fairly simple.  If I had used
     320 x 100 as my array dimensions, and then copied that to the screen,
     the last four or so rows would have looked pretty weird.  They would
     not have been softened properly, and the end result would not be at all
     flamey.  So, I just copied up to row 100 to the screen, and left the
     rest.

     As an experiment, try changing the third line below in the DrawScreen
     procedure to   MOV  BX, BufferY   and changing the dimensions to
     320x100 and see what happens.

     MOV   SI, OFFSET Buffer          ; Point SI to the start of the buffer
     XOR   DI, DI                     ; Start drawing at 0, 0
     MOV   BX, BufferY - 4            ; Miss the last four lines from the
                                      ; buffer.  These lines will not look
                                      ; fire-like at all

   ■ Loop back to the top.



 ────────────────────────────────────────────────────────────────────────────

Well, no matter how well I explained all that, it's very hard to actually
see what's going on without looking at some code.  So now we'll step through
the program, following what's going on.

Well, first of all, you have the header.

   .MODEL SMALL   ; Data segment < 64K, code segment < 64K
   .STACK 200H    ; Set up 512 bytes of stack space
   .386

Here, I have said that the program will have a code segment and data segment
total of less than 128K.  I go onto to give the program a 512 byte stack, and
then allow 386 instructions.

  .DATA

CR        EQU 13
LF        EQU 10

The data segment begins, and I give CR and LF the carriage return and line
feed values.

BufferX   EQU 320                       ; Width of screen buffer
BufferY   EQU 104                       ; Height of screen buffer

AllDone   DB CR, LF, "That was:"
          DB CR, LF
          DB CR, LF, "         FFFFFFFFF    IIIIIII     RRRRRRRRR    ..."
          DB CR, LF, "          FFF           III        RRR   RRR   ..."
          DB CR, LF, "          FFF           III        RRR   RRR   ..."
          DB CR, LF, "          FFF           III        RRRRRRRR    ..."
          DB CR, LF, "          FFFFFFF       III        RRRRRRRR    ..."
          DB CR, LF, "          FFF           III        RRR  RRR    ..."
          DB CR, LF, "          FFF           III        RRR   RRR   ..."
          DB CR, LF, "          FFF           III        RRR    RRR  ..."
          DB CR, LF, "         FFFFF        IIIIIII     RRRR    RRRR ..."
          DB CR, LF
          DB CR, LF
          DB CR, LF, "   The demo program from Assembler Tutorial 8. ..."
          DB CR, LF, "   author, Adam Hyde, at: ", CR, LF
          DB CR, LF, "     ■ blackcat@faroc.com.au"
          DB CR, LF, "     ■ http://www.faroc.com.au/~blackcat", CR, LF, "$"

Buffer    DB BufferX * BufferY DUP (?) ; The screen buffer

Seed      DW 3749h                     ; The seed value, and half of my
                                       ; phone number - not in hex though. :)

INCLUDE PALETTE.DAT                    ; The palette, generated with
                                       ; Autodesk Animator, and a simple
                                       ; Pascal program.



Now, at the end, I declare the array and declare a SEED VALUE for the Random
procedure that follows.  The seed is just a number that is necessary to start
the Random procedure off, and can be anything you want it to.

I have also saved some space and put the data for the palette into an external
file which is included during assembly.  Have a look inside the file.  Being
able to use INCLUDE can save a lot of space and confusion.

I've skipped through some procedures that are fairly self-explanatory, and
moved onto the DrawScreen procedure.

DrawScreen PROC
   MOV   SI, OFFSET Buffer             ; Point SI to the start of the buffer
   XOR   DI, DI                        ; Start drawing at 0, 0
   MOV   BX, BufferY - 4               ; Miss the last four lines from the
                                       ; buffer.  These lines will not look
                                       ; fire-like at all
Row:
   MOV   CX, BufferX SHR 1             ; 160 WORDS
   REP   MOVSW                         ; Move them
   SUB   SI, 320                       ; Go back to the start of the array row
   MOV   CX, BufferX SHR 1             ; 160 WORDS
   REP   MOVSW                         ; Move them
   DEC   BX                            ; Decrease the number of VGA rows left
   JNZ   Row                           ; Are we finished?
   RET
DrawScreen ENDP

This is also easy to follow, and takes advantage of MOVSW, using it to move
data between DS:SI and ES:DI.

AveragePixels PROC
   MOV   CX, BufferX * BufferY - BufferX * 2  ; Alter all of the buffer,
                                              ; except for the first row and
                                              ; last row
   MOV   SI, OFFSET Buffer + 320              ; Start from the second row

Alter:
   XOR   AX, AX                        ; Zero out AX
   MOV   AL, DS:[SI]                   ; Get the value of the current pixel
   ADD   AL, DS:[SI+1]                 ; Get the value of pixel to the right
   ADC   AH, 0
   ADD   AL, DS:[SI-1]                 ; Get the value of pixel to the left
   ADC   AH, 0
   ADD   AL, DS:[SI+BufferX]           ; Get the value of the pixel underneath
   ADC   AH, 0
   SHR   AX, 2                         ; Divide the total by four

   JZ    NextPixel                     ; Is the result zero?
   DEC   AX                            ; No, so decrement it by one

NOTE:  ONE is the decay value.  If you were to change the line above to, say



       SUB AX, 2  you would find that the fire would not reach so high.
       Experiment...be creative!  :)

NextPixel:
   MOV   DS:[SI-BufferX], AL           ; Put the new value into the array
   INC   SI                            ; Next pixel
   DEC   CX                            ; One less to do
   JNZ   Alter                         ; Have we done them all?
   RET
AveragePixels ENDP

Now we've seen the procedure that does all the softening.  Basically, we just
have a loop that adds up the color values of the pixels around it, carrying
the values of the pixels before.  When it has the lot, the total - held in AX,
is divided by four to get an average.  The average is then plotted directly
above the current pixel.

For more information regarding the ADC instruction, look it up in Tutorial 5,
and look at the programs below:

   Var                                     Var
      W : Word;                               W : Word;

   Begin                                   Begin
      Asm                                     Asm
         MOV  AL, 255                            MOV   AL, 255
         ADD  AL, 1                              ADD   AL, 1
         MOV  AH, 0                              MOV   W, AX
         ADC  AH, 0                           End;
         MOV  W, AX
      End;                                    Write(W);
                                           End;
      Write(W);
   End;

 ^^^ This program returns 256             ^^^ This program returns 0

Remember that ADC is used to make sure that when a register or variable is
not big enough to hold a result, the result is not lost.

Okay, after skipping a few more irrelevant procedures, we come to the main
body, which goes something like this:

Start:
   MOV   AX, @DATA
   MOV   DS, AX                        ; DS now points to the data segment.

We firstly point DS to the data segment, so we can access all our variables.

   CALL  InitializeMCGA
   CALL  SetUpPalette

MainLoop:



   CALL  AveragePixels

   MOV   SI, OFFSET Buffer + BufferX * BufferY - BufferX SHL 1
   ; SI now points to the start of the second last row
   MOV   CX, BufferX SHL 1             ; Prepare to get BufferX x 2 random #s

BottomLine:
   CALL   Random                       ; Get a random number
   MOV    DS:[SI], DL                  ; Use only the low byte of DX - ie,
   INC    SI                           ; the number will be 0 --> 255
   DEC    CX                           ; One less pixel to do
   JNZ    BottomLine                   ; Are we done yet?

Here, a new bottom line is calculated.  The random procedure - many thanks to
it's unknown USENET author - returns a very high value in DX:AX.  However,
we only require a number from 0 to 255, so by using only DL, we have such a
number.

   CALL  DrawScreen                    ; Copy the buffer to the VGA

   MOV   AH, 01H                       ; Check for keypress
   INT   16H                           ; Is a key waiting in the buffer?
   JZ    MainLoop                      ; No, keep on going

   MOV   AH, 00H                       ; Yes, so get the key
   INT   16H

   CALL  TextMode
   MOV   AH, 4CH
   MOV   AL, 00H
   INT   21H                           ; Return to DOS
END Start

And I think the end part is also pretty easy to understand.  I've tried to
comment the source as much as I can, perhaps a little too heavily in some
parts, but I hope by now everyone has an idea of how a fire routine works.

Anyway, the goal was not to teach you how to make a fire routine, but how to
use arrays, so if you got the fire routine stuff too, then that's an added
bonus.  I referred to my arrays slightly differently to how I explained in
this tutorial, but the theory is still the same, and it shows you other ways
of doing things.  If you didn't get how to use arrays from that, then maybe
you never will, at least not with my tutorials anyway.  Hey, go buy a $50
book!  :)

 ────────────────────────────────────────────────────────────────────────────

Next week's tutorial will include:

   ■ File I/O
   ■ Using Assembler with C/C++
   ■ Lookup tables?
   ■ Macros.

If you wish to see a topic discussed in a future tutorial, then mail me, and
I'll see what I can do.



 ────────────────────────────────────────────────────────────────────────────

Don't miss out!!!  Download next week's tutorial from my homepage at:

  ■ http://www.faroc.com.au/~blackcat

See you next week!

- Adam.

 ────────────────────────────────────────────────────────────────────────────

                Yet another joke I grabbed off a local BBS:

 ────────────────────────────────────────────────────────────────────────────

If God Was A Computer Programmer:

Some important theological questions can best be answered by thinking of
God as a computer programmer.

Q: Did God really create the world in seven days?
A: He did it in six days and nights while living on cola and candy bars.
   On the seventh day he went home and found out his girlfriend had left him.

Q: What causes God to intervene in earthly affairs?
A: If a critical error occurs, the system pages him automatically and he logs
   on from home to try to bring it up. Otherwise, things can wait until
   tomorrow.

Q: How come the Age of Miracles ended?
A: That was the development phase of the project.
   Now we're in the maintenance phase.

Q: Who is Satan?
A: Satan is an MIS director who takes credit for more powers than he actually
   possesses, so nonprogrammers become scared of him.  God thinks he's
   irritating but irrelevant.

Q: Why does God allow evil to happen?
A: God thought he eliminated evil in one of the earlier revs.

Q: How can I protect myself from evil?
A: Change your password every month and don't make it a name, a common word,
   or a date like your birthday.

Q: If I pray to God, will he listen?
A: You can waste his time telling him what to do, or you can just get off his
   back and let him program.

Q: Some people claim they hear the voice of God. Is this true?
A: They are much more likely to receive email.


